交通运输系统工程与信息 ›› 2024, Vol. 24 ›› Issue (6): 169-178.DOI: 10.16097/j.cnki.1009-6744.2024.06.015

• 系统工程理论与方法 • 上一篇    下一篇

基于订单数据的网约车充电行为驱动因素及非线性效应

尹超英1,桂晨1,邵春福2,王菁3,王晓全*4   

  1. 1. 南京林业大学,汽车与交通工程学院,南京210037;2.新疆大学,新疆交通基础设施绿色建养与 智慧交通管控重点实验室,乌鲁木齐830017;3.北京交通大学,综合交通运输大数据应用 技术交通运输行业重点实验室,北京100044;4.河海大学,土木与交通学院,南京210098
  • 收稿日期:2024-07-05 修回日期:2024-09-26 接受日期:2024-10-16 出版日期:2024-12-25 发布日期:2024-12-18
  • 作者简介:尹超英(1989- ),女,山西五寨人,副教授,博士。
  • 基金资助:
    国家自然科学基金 (52202388, 72204114);教育部人文社科项目(22YJC630191)。

Impact Factors and Nonlinear Effects of Ride-hailing Charging Behavior Based on Order Data

YIN Chaoying1,GUI Chen1,SHAO Chunfu2,WANG Jing3,WANG Xiaoquan*4   

  1. 1. College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China; 2. Xinjiang Key Laboratory of Green Construction and Smart Traffic Control of Transportation Infrastructure, Xinjiang University, Urumqi 830017, China; 3. Key Laboratory of Transport Industry of Big DataApplication Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China; 4. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
  • Received:2024-07-05 Revised:2024-09-26 Accepted:2024-10-16 Online:2024-12-25 Published:2024-12-18
  • Supported by:
    NationalNaturalScienceFoundation of China (52202388, 72204114);Humanities and Social Sciences Fund of Ministry of Education of China (22YJC630191)。

摘要: 为探究建成环境对电动网约车的充电行为驱动因素和非线性效应,本文以南京市网约车为例,提出一种基于订单数据的电动网约车充电行为识别算法,从密度、多样性、设计、目的可达性和公交临近度这5个维度构建建成环境指标,利用XGBoost模型和SHAP(SHAPleyadditive explanatory)值算法,识别影响电动网约车充电行为的关键因素,分析各因素与网约车充电行为之间的潜在非线性关系。同时,本文将该模型拟合回归效果与随机森林(RF)和LightGBM进行比较,以验证XGBoost模型在拟合回归效果上的优势。结果表明:XGBoost模型的拟合效果优于其他模型,具有最小的预测误差波动和最高的R2值(0.446)。在影响网约车充电行为的建成环境因素中,餐馆数量、与市中心的距离和休闲娱乐设施数量对网约车充电行为影响最大,对充电行为的贡献度超过75%。此外,建成环境各因素对网约车充电行为均存在非线性效应,到市中心的距离对充电行为的影响呈现先正后负的反馈特征,其余变量对充电行为的影响则呈现先负后正的反馈特征。

关键词: 城市交通, 非线性效应, 机器学习, 网约车充电行为, 公共充电站规划

Abstract: This paper investigates the impact factors and nonlinear effects of charging behavior for electric ride-hailing vehicles in the built environment which is an important part of public charging station planning and operation. Based on the ride-hailing order data from Nanjing city, this paper develops an algorithm to identify charging behavior for electric ride-hailing vehicles and proposes ten built environment indicators from five dimensions: density, diversity, design, destination accessibility, and proximity to public transportation. The key impact factors on the charging behavior of electric ride-hailing vehicles are identified using the XGBoost model and Shapley additive explanation (SHAP) value algorithm, and the potential nonlinear relationships between these factors and charging behavior are further analyzed. Additionally, the model's fitting performance is compared with Random Forest (RF) and LightGBM to validate the effectiveness of the XGBoost model in regression fitting. The results show that the XGBoost model has better performance compared with traditional models, with smaller prediction error fluctuation and higher R2 (0.446) than the traditional models. The number of restaurants, distance from the city center, and the number of leisure and entertainment facilities are found to have the most significant impacts on charging behavior. Moreover, all built environment factors show nonlinear effects on the charging behavior, with the distance to the city center showing apositive impact at the beginning and then becomes negative, while other variables exhibit a negative impact at the beginning and then becomes positive.

Key words: urban traffic, nonlinear effects, machine learning, ride-hailing charging behavior, public charging station planning

中图分类号: