[1]DING R, ZHANG T, ZHOU T, et al. Topologic
characteristics and sustainable growth of worldwide
urban rail networks[J]. International Journal of Modern Physics B, 2021, 35(11): 2150151.
[2]罗艺,钱大琳.公交-地铁复合网络构建及网络特性分析[J]. 交通运输系统工程与信息,2015, 15(5): 39-44.
[LUO Y, QIAN D L. Construction of subway and bus
transport networks and analysis of the network topology
characteristics[J]. Journal of Transportation Systems
Engineering and Information Technology, 2015, 15(5):
39-44.]
[3]郑乐,高良鹏,陈学武,等.地铁-公交加权复合网络关键站点识别及鲁棒性研究[J].交通运输系统工程与信息, 2023, 23(5): 120-129. [ZHENG Y, GAO L P,
CHEN X W, et al. Critical stations identification and
robustness analysis of weighted metro-bus composite
network[J].
Journal
of
Transportation
Systems
Engineering and Information Technology, 2023, 23(5):
120-129.]
[4]MENG Y, TIAN X, LI Z, et al. Exploring node
importance evolution of weighted complex networks in
urban rail transit[J]. Physica A: Statistical Mechanics
and its Applications, 2020, 558(1):124925.
[5]LIU C, YIN H, SUN Y, et al. A grade identification
method of critical node in urban road network based
on multi-attribute evaluation correction[J]. Applied
Sciences, 2022, 12(2): 813-813.
[6]王亭,张永,周明妮,等.融合网络拓扑结构特征与客流量的城市轨道交通关键节点识别研究[J].交通运输系统工程与信息,2022, 22(6): 201-211. [WANG T,
ZHANG Y, ZHOU M N, et al. Identification of key nodes
of urban rail transit integrating network topology
characteristics and passenger flow[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2022, 22(6): 201-211.]
[7]孙小慧,刘毅,米玉梅,等.韧性视角下城市地铁与常规公交网络关键站点及线路识别[J].复杂系统与复杂性科学,2024, 5: 1-9. [SUN X H, LIU Y, MI Y M, et al.
Identification of key stations and routes in urban metro
and conventional bus networks from a resilience
perspective[J]. Complex System and Complexity Science,
2024, 5: 1-9.]
[8]ZHE L, XINYU H. Identifying influential spreaders by
gravity model considering multi-characteristics of nodes
[J]. Scientific Reports, 2022, 12(1): 9879-9879.
[9]吴亚丽,任远光,董昂,等.基于邻域K-shell分布的关键节点识别方法[J]. 计算机工程与应用,2024,60(2):
87-95. [WU Y L, REN Y G, DONG A, et al. Key nodes
identification method based on neighborhood K-shell
distribution[J]. Computer Engineering and Applications,
2024, 60(2): 87-95.]
[10]王灏翔, 陈俊熙,卫振林,等.一种基于相对熵与邻居影响聚类的复杂网络关键节点识别新算法[J].北京交通大学学报,2024,48(2): 154-164, 175. [WANG H X,
CHEN J X, WEI Z L, et al. A novel algorithm for identifying key nodes in complex networks based on
relative entropy and neighbor influence clustering[J].
Journal of Beijing Jiaotong University, 2024, 48(2): 154
164, 175.]
[11]马书红, 杨磊,陈西芳,等.城市群生态综合交通网络组团特性分析与关键节点识别[J].清华大学学报(自然科学版), 2023, 63(11): 1770-1780. [MA S H, YANG L,
CHEN X F, et al. Analysis of cluster characteristics and
key node identification of ecological comprehensive
transportation network in urban agglomeration[J].
Tsinghua Science and Technology, 2023, 63(11): 1770
1780.]
[12]冯芬玲,蔡明旭,贾俊杰.基于多层复杂网络的中欧班列运输网络关键节点识别研究[J].交通运输系统工程与信息, 2022, 22(6): 191-200. [FENG F L, CAI M X,
JIA J J. Key node identification of China railway express
transportation network based on multi-layer complex
network[J].
Journal
of
Transportation
Systems
Engineering and Information Technology, 2022, 22(6):
191-200.]
[13]JIA T, LIU W Y, LIU X T. A cross-city exploratory
analysis of the robustness of bus transit networks using
opensource data[J]. Physica A: Statistical Mechanics and its Applications, 2021, 580: 126133.
[14]蔡鉴明, 邓薇.长沙地铁网络复杂特性与级联失效鲁棒性分析[J]. 铁道科学与工程学报,2019,16(6):1587-1596. [CAI J M, DENG W. Complex characteristics of
Changsha metro network and robustness analysis of
cascading failures[J]. Journal of Railway Science and
Engineering, 2019, 16(6): 1587-1596.]
[15]GUO H, WANG S, YAN X, et al. Node importance
evaluation method of complex network based on the
fusion gravity model[J]. Chaos, Solitons and Fractals:
Applications
in
Science and Engineering: An
Interdisciplinary Journal of Nonlinear Science, 2024,
183: 114924.
[16]MA L, MA C, ZHANG H, et al. Identifying influential
spreaders in complex networks based on gravity formula
[J].
Physica A: Statistical Mechanics and its
Applications, 2016, 451: 205-212.
[17]XUAN Y, FUYUAN X. An improved gravity model to
identify influential nodes in complex networks based on
k-shell method[J]. Knowledge-Based Systems, 2021,
227: 107198.
[18]XIAN T, SEN P, FLAVIANO M, et al. Collective
influence of multiple spreaders evaluated by tracing real
information flow in large-scale social networks[J].
Scientific Reports, 2016, 6(1): 36043.
|