交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (4): 175-192.DOI: 10.16097/j.cnki.1009-6744.2025.04.017
宋翠颖*a,b ,丁杰a,b ,张春波a,b
收稿日期:
2025-02-03
修回日期:
2025-03-28
接受日期:
2025-04-09
出版日期:
2025-08-25
发布日期:
2025-08-25
作者简介:
宋翠颖(1988—),女,河北雄县人,讲师。
基金资助:
SONG Cuiying*a,b, DING Jiea,b, ZHANG Chunboa,b
Received:
2025-02-03
Revised:
2025-03-28
Accepted:
2025-04-09
Online:
2025-08-25
Published:
2025-08-25
Supported by:
摘要: 模块化公交车辆(Modular Transit Vehicles, MTV)作为一种创新的公共交通工具,其核心特点是能够根据需求灵活地组合与拆分模块单元,优化公共交通系统的资源利用率、运营效率和乘客舒适度。近年来,随着智能交通技术的发展,MTV的调度策略成为研究热点,为此,本文总结与分析MTV调度和评价方法的研究现状。首先,介绍如何对已有的MTV调度研究进行分类以及各类别包含的研究内容;其次,分类整理MTV调度的相关研究,并总结MTV的评价指标,分类方式主要根据已有研究中MTV的调度服务范围进行划分(单线路服务范围和线路网服务范围),再根据模块化单元之间可组合与拆分的站点位置和MTV运行线路的特点进一步细分(固定/弹性单线路调度和固定/灵活线路网调度),此外,还涵盖MTV具体的服务模式(常规公交、接驳公交、直达公交、穿梭公交、需求响应式公交和定制公交);最后,总结研究内容中存在的不足,为未来潜在研究方向提供建议,深入探讨乘客车内换乘方案、MTV充换电策略、丰富MTV研究场景以及关注MTV基础设施建设,并重视公众对模块化公交车辆的认识度。
中图分类号:
宋翠颖, 丁杰, 张春波. 模块化公交车辆调度研究综述[J]. 交通运输系统工程与信息, 2025, 25(4): 175-192.
SONG Cuiying, DING Jie, ZHANG Chunbo. Review of Modular Transit Vehicles Scheduling Research[J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(4): 175-192.
[1]陈哲舒,马川淇,盛伟,等.基于模块化公交的机场远程旅客接驳系统设计[J].科技创新与应用,2023,13 (14): 131-134, 139. [CHEN Z S, MA C Q, SHENG W, et al. Design of airport remote passenger shuttle system based on modular bus[J]. Technology Innovation and Application, 2023, 13(14): 131-134, 139.] [2]栗慧哲,刘明扬,王江波,等.智能网联环境下自动驾驶MTV服务框架设计[J].人民公交,2024(11): 59-63. [LI H Z, LIU M Y, WANG J B, et al. Design of autonomous driving MTV service framework in an intelligent connected environment[J]. People's Bus, 2024 (11): 59-63.] [3] HAN Y, MA X, YU B, et al. Planning two-dimensional trajectories for modular bus enroute docking[J]. Transportation Research Part E, 2024, 192: 103769 103769. [4] LI Q, LI X. Trajectory planning for autonomous modular vehicle docking and autonomous vehicle platooning operations[J]. Transportation Research Part E: Logistics and Transportation Review, 2022, 166: 102886. [5] LI Q, LI X. Trajectory optimization for autonomous modular vehicle or platooned autonomous vehicle split operations[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 176: 103115. [6]江军,田哲文.模糊逻辑控制在模块化车辆轨迹的应用研究[J]. 机械设计与制造,2024(12): 161-168. [JIANG J, TIAN Z W. Application of fuzzy logic control in modular vehicle trajectory[J]. Mechanical Design and Manufacturing, 2024(12): 161-168] [7] ZHOU J, WANG J, HE J, et al. A reconfigurable modular vehicle control strategy based on an improved artificial potential field[J]. Electronics, 2022, 11(16): 2539. [8] ZHOU J, WANG J, HE J, et al. Design, fabrication, and control algorithm of self-reconfigurable modular intelligent vehicles[J]. Applied Sciences, 2022, 12(14): 6886. [9] REJALI S, AGHABYK K, MOHAMMADI A, et al. Evaluating public a priori acceptance of autonomous modular transit using an extended unified theory of acceptance and use of technology model[J]. Journal of Public Transportation, 2024, 26: 100081. [10] 张鑫, 俞礼军,蒋志远.基于舒适度的单线常规公交优化设计[J]. 交通科学与工程, 2017, 33(4): 64-69. [ZHANG X, YU L J, JIANG Z Y. Optimization design of single-line regular bus based on comfort[J]. Traffic Science and Engineering, 2017, 33(4): 64-69.] [11] 刘刚, 李永树.公交网络的认知及可靠性分析[J].系统工程学报,2013, 28(4): 522-528. [LIU G, LI Y S. Cognition and reliability analysis of bus networks[J]. Journal of Systems Engineering, 2013, 28(4): 522-528.] [12] 胡立伟, 武加宝,赵雪亭,等.常规公交运营脆弱性评价及发车优化研究[J].公路交通科技,2024,41 (6): 173-181. [HU L W, WU J B, ZHAO X T, et al. Vulnerability evaluation and departure optimization of regular bus operations[J]. Highway and Transportation Technology, 2024, 41(6): 173-181.] [13] 成向立. 接驳公交线路设计及调度方法研究综述[J]. 西部皮革, 2018, 40(10): 33. [CHENG X L. Review of shuttle bus route design and scheduling methods[J]. Western Leather, 2018, 40(10): 33. [14] 王钰文. 考虑直达的公交线网设计问题研究综述[J]. 综合运输,2024, 46(10): 119-124, 155. [WANG Y W. A review of bus network design problems considering direct routes[J]. Comprehensive Transportation, 2024, 46(10): 119-124, 155.] [15] CHEN Z, LI X, ZHOU X. Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method[J]. Transportation Research Part B: Methodological, 2020, 132: 76-100. [16] VANSTEENWEGEN P, MELIS L, AKTAS D, et al. A survey on demand-responsive public bus systems[J]. Transportation Research Part C: Emerging Technologies, 2022, 137: 103573. [17] 姜辉. 关于定制公交基本问题的探讨[J].城市公共交通, 2021(6): 42-44. [JIANG H. Discussion on basic issues of customized bus[J]. Urban Public Transport, 2021(6): 42-44.] [18] 岳昊, 董显龙,王力,等.模块化公交系统车辆单元动态编组方案优化[J].交通运输系统工程与信息,2024, 24(5): 160-172. [YUE H, DONG X L, WANG L, et al. Optimization of dynamic vehicle unit grouping scheme in MTV system[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(5): 160-172.] [19] WU J, KULCSAR B, QU X. A modular, adaptive, and autonomous transit system (MAATS): An in-motion transfer strategy and performance evaluation in urban grid transit networks[J]. Transportation Research Part A: Policy and Practice, 2021, 151: 81-98. [20] LIU T, CEDER A, RAU A. Using deficit function to determine the minimum fleet size of an autonomous modular public transit system[J]. Transportation Research Record, 2020, 2674(11): 532-541. [21] JI Y, LIU B, SHEN Y, et al. Scheduling strategy for transit routes with modular autonomous vehicles[J]. International Journal of Transportation Science and Technology, 2021, 10(2): 121-135. [22] DAI Z, LIU X C, CHEN X, et al. Joint optimization of scheduling and capacity for mixed traffic with autonomous and human-driven buses: A dynamic programming approach[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 598-619. [23] CHEN Z, LI X, ZHOU X. Operational design for shuttle systems with modular vehicles under oversaturated traffic: Discrete modeling method[J]. Transportation Research Part B: Methodological, 2019, 122: 1-19. [24] 范文博,陈香,刘涛.模块化自动驾驶穿梭公交服务频率优化及时刻表设计[J].交通运输工程与信息学报, 2023, 21(2): 160-176. [FAN W B, CHEN X, LIU T. Optimization of service frequency and timetable design for modular autonomous shuttle bus[J]. Journal of Transportation Engineering and Informatics, 2023, 21(2): 160-176.] [25] 胡郁葱, 冯绮璐,贺科智,等.基于模块化车辆技术的机场旅客远程接驳系统调度研究[J].广西师范大学学报(自然科学版),2024,42(4): 41-50. [HU Y C, FENG Q L, HE K Z, et al. Scheduling research on airport passenger remote shuttle system based on modular vehicle technology[J]. Journal of Guangxi Normal University (Natural Science Edition), 2024, 42(4): 41 50.] [26] 高虹, 刘锴,姚恩建.站点需求响应的电动模块公交车重组调度优化[J]. 中国公路学报,2024, 37(4): 24-36. [GAO H , LIU K, YAO E J. Reconfiguration and scheduling optimization of electric modular buses based on station demand response[J]. China Journal of Highway and Transport, 2024, 37(4): 24-36.] [27] TIAN Q, LIN Y H, WANG D Z W, et al. Planning for modular-vehicle transit service system: Model formulation and solution methods[J]. Transportation Research Part C: Emerging Technologies, 2022, 138: 103627. [28] CHEN Z, LI X. Designing corridor systems with modular autonomous vehicles enabling station-wise docking: Discrete modeling method[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 152: 102388. [29] LIU Z, DE ALMEIDA CORREIA G H, MA Z, et al. Integrated optimization of timetable, bus formation, and vehicle scheduling in autonomous modular public transport systems[J]. Transportation Research Part C: Emerging Technologies, 2023, 155: 104306. [30] 易洪波,刘昱岗,王童语.考虑空间需求不均的MTV线路运行方案优化研究[J].交通运输系统工程与信息, 2024, 24(4): 166-175. [YI H B, LIU Y G, WANG T Y. Optimization of MTV route operation plan considering uneven spatial demand[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(4): 166-175.] [31] CAO H, ZHAO J. Optimizing modular vehicle public transportation services with short-turning strategy and decoupling/coupling operations[J]. Sustainability, 2025, 17 (3): 870-870. [32] TIAN Q, LIN Y H, WANG D Z W, et al. Toward real time operations of modular-vehicle transit services: From rolling horizon control to learning-based approach[J]. Transportation Research Part C: Emerging Technologies, 2025, 170: 104938. [33] KHAN Z S, HE W, MENENDEZ M. Application of modular vehicle technology to mitigate bus bunching[J]. Transportation Research Part C: Emerging Technologies, 2023, 146: 103953. [34] LIU Y, CHEN Z, WANG X. Alleviating bus bunching via modular vehicles[J]. Transportation Research Part B: Methodological, 2024, 189: 103051. [35] KHAN Z S, MENENDEZ M. Bus splitting and bus holding: A new strategy using autonomous modular buses for preventing bus bunching[J]. Transportation Research Part A: Policy and Practice, 2023, 177: 103825. [36] ZHANG J, GE Y E, TANG C, et al. Optimising modular autonomous-vehicle transit service employing coupling decoupling operations plus skip-stop strategy[J]. Transportation Research Part E: Logistics and Transportation Review, 2024, 184: 103450. [37] KHAN Z S, MENENDEZ M. No time for stopping: A stop less autonomous modular (SLAM) bus service[J]. Transportation Research Part C: Emerging Technologies, 2025, 171: 104888. [38] XIA D, MA J, AZADEH S S. Integrated timetabling and vehicle scheduling of an intermodal urban transit network: A distributionally robust optimization approach [J]. Transportation Research Part C: Emerging Technologies, 2024, 162: 104610. [39] CHANG A, CONG Y, WANG C, et al. Optimal vehicle scheduling and charging infrastructure planning for autonomous modular transit system[J]. Sustainability, 2024, 16(8): 3316. [40] TIAN Q, LIN Y H, WANG D Z W. Joint scheduling and formation design for modular-vehicle transit service with time-dependent demand[J]. Transportation Research Part C: Emerging Technologies, 2023, 147: 103986. [41] XIA D, MA J, AZADEH S S, et al. Data-driven distributionally robust timetabling and dynamic-capacity allocation for automated bus systems with modular vehicles[J]. Transportation Research Part C: Emerging Technologies, 2023, 155: 104314. [42] LIU X, QU X, MA X. Improving flex-route transit services with modular autonomous vehicles[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 149: 102331. [43] TANG C, LIU J, CEDER A, et al. Optimisation of a new hybrid transit service with modular autonomous vehicles [J]. Transportmetrica A: Transport Science, 2024, 20(2): 2165424. [44] DAKIC I, YANG K, MENENDEZ M, et al. On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram[J]. Transportation Research Part B: Methodological, 2021, 148: 38-59. [45] SHI X, CHEN Z, PEI M, et al. Variable-capacity operations with modular transits for shared-use corridors [J]. Transportation Research Record, 2020, 2674(9): 230 244. [46] XIA D, MA J, AZADEH S S. Integrated timetabling, vehicle scheduling, and dynamic capacity allocation of modular autonomous vehicles under demand uncertainty [J]. arXiv Preprint arXiv, 2024, 2410: 16409, 2024. [47] PEI M, LIN P, DU J, et al. Vehicle dispatching in modular transit networks: A mixed-integer nonlinear programming model[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 147: 102240. [48] 刘小寒,马晓磊,刘钲可.面向公共交通的电动自动驾驶模块车调度优化[J].中国公路学报,2022,35 (3): 240-248. [LIU X H, MA X L, LIU Z K. Electric autonomous modular vehicle scheduling optimization for public transportation[J]. China Journal of Highway and Transport, 2022, 35(3): 240-248.] [49] GAO H, LIU K, WANG J, et al. Modular bus unit scheduling for an autonomous transit system under range and charging constraints[J]. Applied Sciences, 2023, 13 (13): 7661. [50] KHAN Z S, MENENDEZ M. A seamless bus network without external transfers using autonomous modular vehicles[J]. Transportation Research Part C: Emerging Technologies, 2024, 168: 104822. [51] 高天洋, 胡大伟,姜瑞森,等.基于模块化车辆的区域灵活接驳公交线路优化[J].吉林大学学报(工学版), 2025, 55(2): 537-545. [GAO T Y, HU D W, JIANG R S, et al. Optimization of regional flexible shuttle bus routes based on modular vehicles[J]. Journal of Jilin University (Engineering Edition), 2025, 55(2): 537-545.] [52] ZERMASLI D, ILIOPOULOU C, LASKARIS G, et al. Feeder bus network design with modular transit vehicles [J]. Journal of Public Transportation, 2023, 25: 100078. [53] GONG M, HU Y, CHEN Z, et al. Transfer-based customized modular bus system design with passenger route assignment optimization[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 153: 102422. [54] ZHANG Z, TAFRESHIAN A, MASOUD N. Modular transit: Using autonomy and modularity to improve performance in public transportation[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 141: 102033. [55] GUO R, GUAN W, VALLATI M, et al. Modular autonomous electric vehicle scheduling for customized on-demand bus services[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 10055 10066. [56] GUO R, BHATNAGAR S, GUAN W, et al. Operationalizing modular autonomous customised buses based on different demand prediction scenarios[J]. Transportmetrica A: Transport Science, 2023: 2296498. [57] FU Z, CHOW J Y J. Dial-a-ride problem with modular platooning and en-route transfers[J]. Transportation Research Part C: Emerging Technologies, 2023, 152: 104191. [58] 郭梅雪,靳文舟,巫威眺.考虑充换电的模块化需求响应公交路径优化[J].交通运输工程与信息学报,2024, 22(3): 34-51. [GUO M X, JIN W Z, WU W T. Modular demand-responsive bus route optimization considering charging and battery swapping[J]. Journal of Transportation Engineering and Informatics, 2024, 22(3): 34-51.] [59] RAU A, TIAN L, JAIN M, et al. Dynamic autonomous road transit (DART) for use-case capacity more than bus [J]. Transportation Research Procedia, 2019, 41: 812 823. [60] LIN X, CHEN Z, LI M, et al. Bunching-proof capabilities of modular buses: An analytical assessment[J]. Transportation Science, 2024, 58(5): 925-925. [61] OARGA I T, PRUNEAN G, VARGA B O, et al. Comparative analysis of energy efficiency between battery electric buses and modular autonomous vehicles [J]. Applied Sciences, 2024, 14(11): 4389. |
[1] | 谭德明, 陈可沛, 吴大维, 李延欢, 胡四新, 张彩平. 低碳视角下轨道交通与土地利用供需协同发展研究[J]. 交通运输系统工程与信息, 2025, 25(4): 13-23. |
[2] | 张鹏羽, 李正中, 张翕然, 岳晓辉. 不同时期下城市轨道交通客流的时空影响机制研究[J]. 交通运输系统工程与信息, 2025, 25(4): 24-33. |
[3] | 俞诚成, 戴一楚, 杨超, 徐雷, 袁泉. 出行即服务促销策略对用户生命周期提升的因果推断研究[J]. 交通运输系统工程与信息, 2025, 25(4): 34-43. |
[4] | 姚振兴, 刘贤, 赵一飞, 王亮, 王彦琛. 手机信令不均匀定位下出行端点自适应识别方法[J]. 交通运输系统工程与信息, 2025, 25(4): 44-52. |
[5] | 张鹏, 李兴旺, 姬炳豪, 孙超, 李文权. 路口重复放行的公交与社会车辆协同绿波优化模型[J]. 交通运输系统工程与信息, 2025, 25(4): 53-62. |
[6] | 代亮, 杜鹏飞, 黄自彬, 杨朋博. 基于深度强化学习的城市交通信号分层协同控制方法[J]. 交通运输系统工程与信息, 2025, 25(4): 63-72. |
[7] | 王庞伟, 王思淼, 雷方舒, 徐京辉, 王子鹏, 王力. 混合动作表示强化学习下的城市交叉口智慧信控方法[J]. 交通运输系统工程与信息, 2025, 25(4): 73-83. |
[8] | 王连震, 沈超文, 王宇萍, 薛淑祺. 网联高速公路合流区基于间隙优化的车辆协同控制方法[J]. 交通运输系统工程与信息, 2025, 25(4): 84-95. |
[9] | 王海涌, 张丹, 王孟琳, 田爱爱. 异质交通流下交叉口信号及车辆轨迹融合控制模型[J]. 交通运输系统工程与信息, 2025, 25(4): 96-103. |
[10] | 王维锋, 黄建鑫, 王晓全, 吴昕韩, 卞子馨. 基于无锚旋转框的航拍图像车辆全向检测方法[J]. 交通运输系统工程与信息, 2025, 25(4): 104-115. |
[11] | 陈峥, 张景, 陈博闻, 李春宇, 郭凤香, 魏福星. 基于异构多图时空融合的长时域车辆轨迹预测[J]. 交通运输系统工程与信息, 2025, 25(4): 126-136. |
[12] | 王祥, 任浩, 谭国真, 李健平, 王珏, 王妍力. 大语言模型协同强化学习的自动驾驶决策方法[J]. 交通运输系统工程与信息, 2025, 25(4): 137-146. |
[13] | 郑展骥, 冯昌奎, 赵杨洋, 凃强, 张河山, 徐进. 无人机航拍视角下密集场景非机动车小目标检测方法[J]. 交通运输系统工程与信息, 2025, 25(4): 147-161. |
[14] | 吴剑凡, 谢征宇, 秦勇, 王力, 王佳丽. 基于计算机视觉的地铁车站内乘客异常行为检测模型[J]. 交通运输系统工程与信息, 2025, 25(4): 162-174. |
[15] | 谢秉磊, 冯健茜, 秦筱然. 多特征融合的网约车拼车起讫点需求时空预测[J]. 交通运输系统工程与信息, 2025, 25(4): 193-205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||