[1] LU Y, ZHANG Y, JIANG X P, et al. Risk assessment of
passenger behaviors that influence accident type and
severity in metro operation[J]. Psychology Research and
Behavior Management, 2023, 16: 3697-3715.
[2]
ROKA S, DIWAKAR M, SINGH P, et al. Anomaly
behavior detection analysis in video surveillance: A
critical [J]. Journal Electron Imaging, 2023, 32(4):
042106.
[3]
ULLAH W, HUSSAIN T, ULLAH F U M, et al.
TransCNN: Hybrid CNN and transformer mechanism for
surveillance
anomaly
detection[J].
Engineering
Applications of Artificial Intelligence, 2023, 123:
106173.
[4]WANG D C, WANG Q L, HU Q H, et al. Temporal
spatial decoupled self-supervised multi-task learning for
video anomaly detection and localization in intelligent
transportation
surveillance
systems[J].
IEEE
Transactions on Intelligent Transportation Systems,
2025: 1-14.
[5]
冯爽爽,范莎,邓超.基于多尺度增强生成对抗网络的行人异常行为检测[J/OL].计算机工程与应用, (2025
03-26) [2025-07-22]. http://kns.cnki.net/kcms/detail/
11.2127.TP.20250326.1052.009.html. [FENG S S, FAN
S, DENG C, et al. Pedestrian abnormal behavior
detection based on multi-scale enhanced generative
adversarial network[J/OL]. Computer Engineering and
Applications, (2025-03-26) [2025-07-22]. http://kns.
cnki.net/ kcms/detail/ 11.2127.TP.20250326.1052.009.
html.]
[6]石洋宇,谢承杰,郑棣文,等.基于Mamba-CNN的多尺度异常行为检测方法[J/OL].北京航空航天大学学报,
(2024-11-15) [2025-07-22]. https://doi.org/10.13700/j.
bh.1001-5965.2024.0416. [SHI Y Y, XIE C J, ZHENG
L W,et al. Multi-scale anomaly behavior detection
based on Mamba-CNN[J]. Journal of Beijing
University of Aeronautics and Astronautics, (2024
11-15)
[2025-07-22]. https://doi.org/10.13700/j.
bh.1001-5965.2024.0416. ]
[7]
DONG J X, LIU W M, ZHENG Z X, et al. Intercity rail
platform abnormal action recognition based on a skeleton
tracking and recognition framework[J]. Machine Vision
and Applications, 2024, 35(131): 1-18.
[8]管洋,贾利民,陶思涵,等.基于骨架识别的城轨车站监控视频乘客行为特征辨识研究[J].都市快轨交通,
2025, 38(1): 106-111. [GUAN Y, JIA L M, TAO S H,
et al. Passenger behavior feature identification in urban
rail station surveillance videos using skeleton recognition
techniques[J]. Urban Rapid Rail Transit, 2025, 38(1):
106-111.]
[9]
HUANG S Z, LIU X W, CHEN W, et al. A detection
method of individual fare evasion behaviours on metros
based on skeleton sequence and time series[J].
Information Sciences, 2022, 589: 62-79.
[10] 安俊峰,刘吉强,卢萌萌,等.基于改进YOLOv8的地铁站内乘客异常行为感知[J].北京交通大学学报,2024,
48(2): 76-89. [AN J F, LIU J Q, LU M M, et al.
Perception of passenger abnormal behavior in metro
stations based on improved YOLOv8[J]. Journal of
Beijing Jiaotong University, 2024, 48(2): 76-89.]
[11] 莫辉强, 邵唐红,王伟,等.一种基于视频分析的异常行为识别算法及应用[J].计算机与数字工程,2022,50
(9): 1895-1898. [MO H Q, SHAO T H, WANG W, et al.
An abnormal behavior recognition algorithm and
application based on video analysis[J]. Computer and
Digital Engineering, 2022, 50(9): 1895-1898.]
[12] AN J F, LU M M, LI G, et al. Automated subway touch
button detection using image process[J]. Journal of Big
Data, 2024, 11(119): 1-49.
[13] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:
Towards real-time object detection with region proposal
networks[J]. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017, 39 (6): 1137-1149.
[14] HE KM,GKIOXARI G, DOLLARP, et al. Mask R-CNN
[J]. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017, 42(2): 386-397.
[15] WANG C Y, BOCHKOVSKIY A, LIAO H Y. YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for
real-time object detectors[C]. Vancouver, BC, Canada:
IEEE, 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023.
|