[1]World Health Organization. Global status report on road
safety 2018[M]. Geneva: World Health Organization,
2019.
[2]HAGHANI M, BLIEMER M C J, FAROOQ B, et al.
Applications of brain imaging methods in driving
behaviour research[J]. Accident Analysis & Prevention,
2021, 154: 106093.
[3]ZHAO J, ZHAO W, DENG B, et al. Autonomous driving
system: A comprehensive survey[J]. Expert Systems with
Applications, 2024, 242: 122836.
[4]SONKO S, ETUKUDOH E A, IBEKWE K I, et al. A
comprehensive review of embedded systems in
autonomous vehicles: Trends, challenges, and future
directions[J]. World Journal of Advanced Research and
Reviews, 2024, 21(1): 2009-2020.
[5]BENTO V, PAULA L, FERREIRA A, et al. Advances in
EEG-based brain-computer interfaces for control and
biometry[C]//International Symposium on Computational
Intelligence for Engineering Systems, 2009: 1-14.
[6]NACPIL E J C, WANG Z, GUAN M, et al. EEG-based
emergency braking prediction using data ablation and
SVM classification[J]. IEEE Sensors Journal, 2023, 23
(14): 16013-16019.
[7]HU J, MIN J. Automated detection of driver fatigue based
on EEG signals using gradient boosting decision tree
model[J]. Cognitive Neurodynamics, 2018, 12: 431-440.
[8]AREFNEZHAD S, SAMIEE S, EICHBERGER A, et al.
Applying deep neural networks for multi-level
classification of driver drowsiness using vehicle
based measures[J]. Expert Systems with Applications,
2020, 162: 113778.
[9]张冰涛,常文文,李秀兰.基于时空脑电特征与并行神经网络的疲劳驾驶检测[J].交通运输系统工程与信息, 2023, 23(2): 315-325. [ZHANG B T, CHANG W W,
LI X L. Fatigue driving detection based on
spatiotemporal EEG features and parallel neural networks
[J]. Journal of Transportation Systems Engineering and
Information Technology, 2023, 23(2): 315–325.]
[10] LI J, LIANG X, LIU Y, et al. Decoding braking intentions
from EEG signals: A convolution-transformer network
approach[J]. IEEE Sensors Journal, 2024, 24(22): 38329-38343.
[11] LIANG X, YU Y, LIU Y, et al. EEG-based emergency
braking intention detection during simulated driving[J].
BioMedical Engineering OnLine, 2023, 22(1): 65.
[12] JU J, BI L, FELEKE A G. Noninvasive neural signal
based detection of soft and emergency braking intentions
of drivers[J]. Biomedical Signal Processing and Control,
2022, 72: 103330.
[13] LI M, WANG W, LIU Z, et al. Driver behavior and
intention recognition based on wavelet denoising and
Bayesian theory[J]. Sustainability, 2022, 14(11): 6901.
[14] TAO X, GAO D, ZHANG W, et al. A multimodal
physiological dataset for driving behaviour analysis[J].
Scientific Data, 2024, 11(1): 378.
[15] YANG L, MA R, ZHANG H M, et al. Driving behavior
recognition using EEG data from a simulated car
following experiment[J]. Accident Analysis & Prevention,
2018, 116: 30-40.
[16] WANG Y, LIU T, QIN Y, et al. A hybrid approach for
driving behavior recognition: Integration of CNN and
transformer-encoder with EEG data[C]//2023 IEEE 98th Vehicular
Technology
IEEE, 2023: 1-5.
[17] 赵朔, 奇格奇,李培豪,等.基于脑电通道注意力机制的驾驶行为识别研究[J].交通运输系统工程与信息,2024, 24(4): 283-291. [ZHAO S, QI G Q, LI P H, et al.
Driving behavior recognition based on EEG channel
attention mechanism[J]. Journal of Transportation
Systems Engineering and Information Technology, 2024,
24(4): 283-291]
[18] STAM C J. Nonlinear dynamical analysis of EEG and
MEG: Review of an emerging field[J]. Clinical
Neurophysiology, 2005, 116(10): 2266-2301.
[19] 冯国红,郑潇,张彬,等.基于独立成分分析:递归图和改进的高效能网络的脑电情绪识别研究[J].生物医学工程学杂志,2024,41(6): 1103-1109. [FENG G H,
ZHENG X, ZHANG B, et al. EEG emotion recognition
based on independent component analysis: Recurrence
plot and improved efficientNet[J]. Journal of Biomedical
Engineering, 2024, 41(6): 1103-1109.]
[20] HU J, SHEN L, SUN G. Squeeze-and-excitation networks
[C]//Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018: 7132-7141.
[21] THIEL M, ROMANO M C, KURTHS J. How much
information is contained in a recurrence plot?[J]. Physics
Letters A, 2004, 330(5): 343-349.
[22] MARWAN N, ROMANO M C, THIEL M, et al.
Recurrence plots for the analysis of complex systems[J].Physics Reports, 2007, 438(5/6): 237-329.
[23] BRAUN T, KRAEMER K H, MARWAN N. Recurrence
flow measure of nonlinear dependence[J]. The European
Physical Journal Special Topics, 2023, 232(1): 57-67.
[24] MARWAN N, ROMANO M C, THIEL M, et al.
Recurrence plots for the analysis of complex systems[J].
Physics Reports, 2007, 438: 237-329.
[25] LIN C T, KING J T, CHUANG C H, et al. Exploring the
brain responses to driving fatigue through simultaneous
EEG and fNIRS measurements[J]. International Journal
of Neural Systems, 2020, 30(1): 1950018.
[26] 袁月婷, 闫光辉,常文文,等.基于脑电信号空域特征的紧急制动行为识别[J].电子科技大学学报,2024,53(1): 84-91. [YUAN Y T, YAN G H, CHANG W W, et al.
Emergency braking behavior recognition based on spatial
features of EEG signals [J]. Journal of University of
Electronic Science and Technology of China, 2024, 53
(1): 84-91.]
[27] LAWHERN V J, SOLON A J, WAYTOWICH N R, et al.
EEGNet: A compact convolutional neural network
for EEG-based brain-computer interfaces[J]. Journal of
Neural Engineering, 2018, 15(5): 056013.
[28] SHI C, LIU L, ZHANG C, et al. To investigate the ability
of CNN in learning specific frequency band of motor
imagery EEG[C]//2022 7th International Conference on
Signal and Image Processing (ICSIP), IEEE, 2022: 650-654.
|