交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (3): 152-162.DOI: 10.16097/j.cnki.1009-6744.2025.03.014

• 智能交通系统与信息技术 • 上一篇    下一篇

融合递归图的脑电驾驶行为分类方法研究

常文文*,芦家磊,黄霄,闫光辉   

  1. 兰州交通大学,电子与信息工程学院,兰州730070
  • 收稿日期:2025-01-24 修回日期:2025-03-29 接受日期:2025-04-09 出版日期:2025-06-25 发布日期:2025-06-20
  • 作者简介:常文文(1987—),男,兰州甘肃通渭人,副教授。
  • 基金资助:
    国家自然科学基金(62366028, 62466032)。

Driving Behavior Classification Using Electroencephalogram and Recurrence Plot

CHANG Wenwen*, LU Jialei, HUANG Xiao,YAN Guanghui   

  1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2025-01-24 Revised:2025-03-29 Accepted:2025-04-09 Online:2025-06-25 Published:2025-06-20
  • Supported by:
    National Natural Science Foundation of China(62366028, 62466032)。

摘要: 驾驶行为识别是智能驾驶辅助系统的核心问题,而基于脑电信号的驾驶行为分类检测是实现以人为中心的智能驾驶辅助系统的重要途径。为实现常见驾驶行为下脑电信号五分类检测,本文提出一种基于递归图和改进卷积神经网络的方法,即RP-CS。RP-CS方法主要通过挖掘驾驶员脑电信号中重要的非线性特征,并通过融入了通道注意力机制的卷积神经网络进一步提取特征并实现五分类检测。在本方法中,脑电非线性特征的提取方式是将一维时序信号嵌入到更高维度的相空间中,并利用欧氏距离构造出递归图。随后,将同时含有非线性特征和时域特征的递归图作为改进卷积神经网络的输入,利用卷积神经网络在图像数据处理中的优势,实现对驾驶行为的五分类检测。在公开数据集上进行对比实验,结果表明,本文提出的RP-CS驾驶行为识别准确率优于其他方法。在单被试条件下,五类驾驶行为的分类准确率最高可达95.84%;在跨被试条件下,平均分类准确率为71.92%。此结果意味着脑电信号中非线性特征和深度学习模型的有效结合可提高脑电信号分类识别的效率。为驾驶行为监测和辅助安全驾驶提供了一种可行的解决方案,对于提高驾驶辅助系统的性能和驾驶安全具有重要意义。

关键词: 智能交通, 驾驶行为分类, 深度学习, 脑电, 非线性特征

Abstract: Driving behavior recognition is a core challenge in intelligent driving assistance systems, and classifying driving behaviors based on Electroencephalography (EEG) signals is crucial for achieving human-centered intelligent driving assistance. To enable five-class classification of EEG signals under common driving behaviors, this paper proposes a method based on recurrence plots and a convolutional neural network (CNN) with channel squeeze enhancement (RP-CS). The RP-CS method extracts nonlinear features from EEG signals by embedding one-dimensional time-series signals into a higher-dimensional phase space and constructing recurrence plots using Euclidean distances. These recurrence plots, which integrate both nonlinear and temporal features, are used as input to a CNN enhanced with a channel attention mechanism, enabling accurate five-class classification. Comparative experiments on a public dataset demonstrate that the RP-CS method achieves superior performance, with a maximum classification accuracy of 95.84% under subject-dependent conditions and an average classification accuracy of 71.92% under subject-independent conditions. The results indicate that effectively combining nonlinear EEG features with deep learning models can significantly enhance the efficiency of EEG-based classification. This approach offers a viable solution for driving behavior monitoring and safety assistance, contributing to improved performance in driving assistance systems and enhanced driving safety.

Key words: intelligent transportation, driving behavior classification, deep learning, electroencephalogram (EEG), nonlinear characteristics

中图分类号: