[1]胡笳,罗书源,赖金涛,等.自动驾驶对交通运输系统规划的影响综述[J].交通运输系统工程与信息,2021,
21(5): 52-65, 76. [HU J, LUO S Y, LAI J T, et al. The
method of probabilistic multi-model expected trajectory
prediction based on LSTM[J]. Journal of Transportation
Systems Engineering and Information Technology, 2021,
21(5): 52-65, 76.]
[2]宋秀兰,董兆航,单杭冠,等.基于时空融合的多头注意力车辆轨迹预测[J].浙江大学学报(工学版),2023,
57(8): 1636-1643. [SONG X L, DONG Z H, SHAN H G,
et al. Vehicle trajectory prediction based on temporal
spatial multi-head attention mechanism[J]. Journal of
Zhejiang University(Engineering Science), 2023, 57(8):
1636-1643.]
[3] QIAO S Y, GAO F, WU J H, et al. An enhanced vehicle
trajectory prediction model leveraging LSTM and social
attention mechanisms[J]. IEEE Access, 2024, 12: 1718
1726.
[4]李文礼,韩迪,石晓辉,等.基于时-空注意力机制的车辆轨迹预测[J]. 中国公路学报,2023, 36(1): 226-239.
[LI W L, HAN D, SHI X H, et al. Vehicle trajectory
prediction based on spatial-temporal attention mechanism
[J]. China Journal of Highway and Transport, 2023, 36
(1): 226-239.]
[5]杨达,刘家威,郑斌,等.基于时域卷积网络与注意力机制的车辆换道轨迹预测模型[J].交通运输系统工程与信息,2024, 24(2): 114-126. [YANG D, LIU J W,
ZHENG B, et al. A vehicle lane-changing trajectory
prediction model based on temporal convolutional
networks and attention mechanism[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2024, 24(2): 114-126.]
[6] GAO Y, FU J L, FENG W W, et al. Surrounding vehicle
trajectory prediction under mixed traffic flow based on
graph attention network[J]. Physica A: Statistical
Mechanics and Its Applications, 2024, 639.
[7]温惠英,张昕怡,黄俊达,等.考虑动态交互作用的智能车辆轨迹预测[J].交通运输系统工程与信息,2024,
24(4): 60-68. [WEN H Y, ZHANG X Y, HUANG J D,
et al. Intelligent vehicle trajectory prediction considering
dynamic interactions[J]. Journal of Transportation
Systems Engineering and Information Technology, 2024,
24(4): 60-68.]
[8]
季学武,费聪,何祥坤,等.基于LSTM网络的驾驶意图识别及车辆轨迹预测[J].中国公路学报,2019,32(6):
34-42. [JI X W, FEI C, HE X K, et al. Intention
recognition and trajectory prediction for vehicles using
LSTM network[J]. China Journal of Highway and
Transport, 2019, 32(6): 34-42.]
[9]
高镇海,鲍明喜,高菲,等.基于LSTM概率多模态预期轨迹预测方法[J]. 汽车工程,2023, 45(7): 1145-1152,
1162. [GAO Z H, BAO M X, GAO F, et al. The
method of probabilistic multi-model expected trajectory
prediction based on LSTM[J]. Automotive Engineering,
2023, 45(7): 1145-1152, 1162.]
[10] XUE Q W, XINF Y Y, LU J. An integrated lane change
prediction model incorporating traffic context based on
trajectory data[J]. Transportation Research, Part C:
Emerging Technologies, 2022, 141: 103738.
[11] 孟宪伟, 唐进君, 王喆, 等. 考虑换道意图的LSTM
AdaBoost 车辆轨迹预测模型[J]. 计算机工程与应用,
2022, 58(13): 280-287. [MENG X W, TANG J J, WANG
Z, et al. Trajectory prediction of vehicles based on LSTM
AdaBoost model considering lane change intention[J].
Computer Engineering and Applications, 2022, 58(13):
280-287.]
[12] GENG M S, LI J Y, XIA Y J, et al. A physics-informed
transformer model for vehicle trajectory prediction on
highways[J]. Transportation Research, Part C: Emerging
Technologies, 2023, 154: 104272.1-104272.28.
[13] GAO K, LI X H, CHEN B, et al. Dual transformer based
prediction for lane change intentions and trajectories in
mixed traffic environment[J]. IEEE Transactions on
Intelligent Transportation Systems, 2023, 24(6): 6203
6216.
[14] CHEN X B, ZHANG H J, ZHAO F, et al. Vehicle
trajectory prediction based on intention-aware non
autoregressive transformer with multi-attention learning
for internet of vehicles[J]. IEEE Transactions on
Instrumentation and Measurement, 2022, 71: 1-12.
[15] ZHANG H S, TAN X, FAN M W, et al. Accurate
detection and tracking of small-scale vehicles in high
altitude unmanned aerial vehicle bird-view imagery[J].
Journal of Advanced Transportation, 2023, 2023(1):
5384844.
|