交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (2): 119-127.DOI: 10.16097/j.cnki.1009-6744.2025.02.011

• 智能交通系统与信息技术 • 上一篇    下一篇

期望状态约束下多车协同编队与分布式优化方法

袁振洲,周博涵,陈沫,杨洋*   

  1. 北京交通大学,交通运输学院,北京100044
  • 收稿日期:2024-12-25 修回日期:2025-01-17 接受日期:2025-02-11 出版日期:2025-04-25 发布日期:2025-04-20
  • 作者简介:袁振洲(1966—),男,吉林舒兰人,教授,博士。
  • 基金资助:
    中央高校基本科研业务费 (2024JBRC009);国家自然科学基金/(52302423);北京市自然科学基金(E2024210149)。

Multi-vehicle Collaborative Platooning and Distributed Optimization Methods Under Expected State Constraints

YUAN Zhenzhou,ZHOU Bohan,CHEN Mo,YANG Yang*   

  1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
  • Received:2024-12-25 Revised:2025-01-17 Accepted:2025-02-11 Online:2025-04-25 Published:2025-04-20
  • Supported by:
    Fundamental Research Funds for the Central Universities (2024JBRC009);National Natural Science Foundation of China (52302423);Beijing Natural Science Foundation (E2024210149)。

摘要: 传统研究主要关注车辆间交互和以稳定间距为主导的编队分析,缺乏从多维状态角度对编队过程进行引导和约束以满足更加精细化的交通控制需求。因此,本文提出一种基于期望状态约束的车辆编队优化方法,优化纵向控制过程。首先,定义编队期望状态,涵盖编队完成时间、距离、速度、加速度和间距这5个维度;随后,针对编队头车前方无其他车辆干扰的理想场景,基于模型预测控制方法建立无前车干扰的编队控制优化模型,并进一步针对存在前车干扰的常见场景,提出相应的编队控制模型;采用基于相邻车辆对的分布式计算策略,在降低计算压力的同时提升编队过程的安全性和鲁棒性;最后,基于Python搭建可视化仿真程序验证算法的有效性。结果表明:过短的期望距离和期望时间是阻碍编队可行的主要原因,并且随着期望距离和期望速度的提高,编队可行的最短时间阈值将相应提高;车辆行驶过程中,可行期望状态下编队的实际执行效果良好,最终编队状态与期望编队状态的偏离率小于1‰,同时能够确保轨迹的安全和平滑;在计算效率上,分布式比集中式策略有优势,并且优势会随编队规模的增大而显著,在由9辆车组成的较大规模编队任务中,最长计算时间不超过0.3s。

关键词: 智能交通, 期望编队状态, 模型预测控制, 车辆编队, 分布式优化

Abstract: Traditional studies on vehicle platooning mainly focused on vehicle interactions and the analysis of platoon formation, lacking a systematic exploration of the platoon formation from an overall state perspective. Therefore, this study investigates the optimization mechanism of the vehicle platooning process under the constraint of the overall desired state, and proposes a longitudinal platoon control optimization method based on desired platoon state constraints. First, the desired platoon state is defined, covering five dimensions: platoon completion time, distance, speed, acceleration, and spacing. Then, in the ideal scenario where no vehicles interfere with the leading vehicle, a platoon control optimization model without the front vehicle constraint is established based on model predictive control. Further, for the common scenario where the front vehicle is interfering, a corresponding platoon control model is proposed. This study adopts a distributed computation mode based on adjacent vehicle pairs, which reduces computational pressure while enhancing the safety and robustness of the platooning process. Finally, a Python based visualization simulation program is developed to verify the effectiveness of the algorithm. The results show that excessively short desired distances and expected times are the main factors hindering platoon feasibility, and as the desired distance and speed increase, the minimum feasible platoon time threshold also increases accordingly. In terms of execution, the actual performance of the platoon under feasible desired states is satisfactory, with the deviation from the initial platoon target being less than 1‰ , while ensuring the safety and smoothness of the vehicle trajectories. In terms of computational efficiency, the distributed strategy outperforms the centralized strategy, with this advantage becoming more pronounced as the number of platooning vehicles increases. In the larger-scale platooning task consisting of 9 vehicles, the maximum computation time does not exceed 0.3 seconds.

Key words: intelligent transportation, expected platoon state, model predictive control, vehicle platooning, decentralized optimization

中图分类号: