交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (4): 84-95.DOI: 10.16097/j.cnki.1009-6744.2025.04.009

• 智能交通系统与信息技术 • 上一篇    下一篇

网联高速公路合流区基于间隙优化的车辆协同控制方法

王连震*1 ,沈超文1 ,王宇萍2 ,薛淑祺3   

  1. 1. 东北林业大学,土木与交通学院,哈尔滨150040;2.哈尔滨市城乡规划设计研究院,哈尔滨150000; 3. 长安大学,运输工程学院,西安710064
  • 收稿日期:2025-04-21 修回日期:2025-06-04 接受日期:2025-06-11 出版日期:2025-08-25 发布日期:2025-08-25
  • 作者简介:王连震(1985—),男,山东禹城人,副教授,博士。
  • 基金资助:
    黑龙江省自然科学基金联合引导项目(PL2024E013);长安大学中央高校基本科研业务费专项资金(300102344501-1-1)。

Gap-optimized Cooperative Merging Control Method for Freeway On-ramp Area in Connected Vehicle Environment

WANG Lianzhen*1, SHEN Chaowen1, WANG Yuping2, XUE Shuqi3   

  1. 1. School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China; 2. Harbin Urban and Rural Planning and Design Insititute, Harbin 150000, China; 3. School of Transportation Engineering, Chang'an University, Xi'an 710064, China
  • Received:2025-04-21 Revised:2025-06-04 Accepted:2025-06-11 Online:2025-08-25 Published:2025-08-25
  • Supported by:
    Natural Science Foundation of Heilongjiang Province(PL2024E013);The Fundamental Research Funds for the Central Universities, CHD (300102344501-1-1)。

摘要: 入口匝道车辆可利用主线车辆换道生成的合流间隙,以车队的形式汇入主线。基于此,面向网联自动驾驶车辆(Connected and Automated Vehicles, CAVs)和网联人工驾驶车辆(Connected Human-driven Vehicles, CHVs)的混合交通流,提出一种高速公路合流区基于间隙优化的协同控制(Gap-Optimized Cooperative Merging Control, GOCMC)方法。GOCMC通过构建车辆换道对主线及匝道交通流的综合效益模型,以最大化综合效益为目标,实现主线车辆换道与匝道车辆编队的协同控制,并结合车辆类型和功能特性,差异化控制下游车辆行驶轨迹。仿真结果表明:在不同交通流量下,应用GOCMC后,车辆通过控制区域的平均车速有所提高,且平均延误显著减少。即使在高交通需求(1800veh·h-1·ln-1)下,相较于无控制方案,平均车速仍可提升24.21%,平均延误可减少49.50%;与匝道合流协同控制方法(Cooperative On Ramp Merging Control, CORMC))相比,GOCMC在低渗透率和高匝道流量比下表现出更好的通行效率。敏感性分析显示,增加CAV渗透率可提高合流区通行效率,该效果在低渗透率场景下更为显著;CHV换道依从性对通行效率提升有限,但GOCMC通过周期性优化,有效降低了CHV换道行为随机性带来的影响。

关键词: 智能交通, 协同控制, 合流间隙优化, 车辆编队, 高速公路合流

Abstract: Ramp vehicle platoons can merge into the mainline utilizing gaps created by mainline vehicles' lane changing. Based on this, a Gap-Optimized Cooperative Merging Control (GOCMC) method is proposed for the mixed traffic flow with both Connected and Automated Vehicles (CAVs) and Connected Human-driven Vehicles (CHVs) in connected environment of freeway merging areas. GOCMC constructs a comprehensive benefit model of lane changing on mainline and ramp flow, with the goal of maximizing comprehensive benefit, achieves the cooperative control of mainline vehicle lane changing and ramp vehicle formation. Then, differentiated control of downstream vehicle trajectories is implemented based on vehicle types and functional characteristics. The simulation results show that under different traffic flows, GOCMC can increase the average speed and reduce the average delay for vehicles passing through the control area. When the traffic flow demand is relatively high (i.e., 1800 veh·h-1 ·ln-1 ), the average speed can still be increased by 24.21%, and the average delay can be reduced by 49.50%. Compared with the Cooperative On-Ramp Merging Control (CORMC) method, GOCMC exhibits better traffic efficiency at low penetration rates and high ramp flow ratios. The sensitivity analysis shows that increasing the penetration rate of CAV can improve the traffic efficiency, and this effect is more significant in low penetration scenarios. The compliance of CHV has limited effect on improving traffic efficiency, but GOCMC effectively reduces the impact of the randomness of CHV lane changing behavior through periodic optimization.

Key words: intelligent transportation, cooperative control, merging gap optimization, platoon, freeway on-ramp merging

中图分类号: