交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (4): 53-62.DOI: 10.16097/j.cnki.1009-6744.2025.04.006

• 智能交通系统与信息技术 • 上一篇    下一篇

路口重复放行的公交与社会车辆协同绿波优化模型

张鹏*1 ,李兴旺1 ,姬炳豪1 ,孙超1 ,李文权2   

  1. 1. 江苏大学,汽车与交通工程学院,江苏镇江212013;2.东南大学,交通学院,南京210096
  • 收稿日期:2025-02-10 修回日期:2025-03-14 接受日期:2025-03-20 出版日期:2025-08-25 发布日期:2025-08-25
  • 作者简介:张鹏(1982—),男,江苏徐州人,副教授,博士。
  • 基金资助:
    中国教育部人文社会科学研究基金 (22YJCZH153);江苏省研究生研究与实践创新计划 (SJCX23_2050)。

Green Wave Optimization Model for Coordinated Traffic Flow of Buses and Social Vehicles at Intersections with Repeated Releases

ZHANG Peng*1, LI Xingwang1, GI Binghao1, SUN Chao1, LI Wenquan2   

  1. 1. School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; 2. School of Transportation, Southeast University, Nanjing 210096, China
  • Received:2025-02-10 Revised:2025-03-14 Accepted:2025-03-20 Online:2025-08-25 Published:2025-08-25
  • Supported by:
    Humanities and Social Sciences Foundation of the Ministry of Education of China (22YJCZH153);Research and Practice Innovation Plan for Graduate Students in Jiangsu Province (SJCX23_2050)。

摘要: 为解决公交优先与社会车辆通行效率之间的矛盾,同时兼顾绿波效应,本文提出一种基于路口重复放行的公交与社会车辆协同绿波优化模型。通过引入路口重复放行机制,实现公交与社会车辆在同一交叉口的动态协同优化。模型首先定义了“绿波对”概念,在此基础上,提出以绿波带宽加权和最大化为目标的优化方法,兼顾不同车型的需求以及绿波前后段的截停问题。优化过程中,考虑信号相位差、是否重复放行和信号周期等因素,建立行人过街与绿波约束条件。为验证所提模型的有效性,本文选择镇江市中山东路作为案例,通过VISSIM软件进行仿真分析。结果表明,相较于Multiband与整体式干线公交绿波优化控制方法,本文模型有效减少干线直行及左转社会车辆与公交的平均延误时间和停车次数达30%~34%,对绿波带宽优化达32%~40%。

关键词: 智能交通, 协同优化, 整数线性规划, 公交优先, 重复放行, 绿波带宽

Abstract: To address the conflict between bus priority and the traffic efficiency of general vehicles, while also considering the green wave effect, this paper proposes a bus and general vehicle collaborative green band optimization model based on intersection repeated release. By introducing a repeated release mechanism at the intersection, dynamic collaborative optimization between buses and general vehicles at the same intersection is achieved. The model first defines the concept of a "green wave pair" and proposes an optimization method aimed at maximizing the weighted sum of the green bandwidth, with consideration of the different vehicle types' needs and the stop-and-go problem in the front and rear segments of the green wave. During the optimization process, factors such as signal phase differences, whether repeated passage occurs, and signal cycle time are considered, and pedestrian crossing and green wave constraints are established. To validate the effectiveness of the proposed model, this paper uses Zhongshan Road in Zhenjiang as a case study and conducts a simulation analysis using VISSIM software. The results show that compared to the Multiband and overall trunk bus green band optimization control methods, the proposed model effectively reduces the average delay time and the number of stops for general through and left-turn vehicles and buses by 30%~34%, and optimizes the green bandwidth by 32%~40%.

Key words: intelligent transportation, collaborative optimization, integer linear programming, bus priority, repeat release, green wave bandwidth

中图分类号: