[1]黄志清,曲志伟,张吉,等.基于深度强化学习的端到端无人驾驶决策[J]. 电子学报, 2020, 48(9): 1711
1719. [HUANG Z Q, QU Z W, ZHANG J, et al. End-to
end autonomous driving decision based on deep
reinforcement learning[J]. Acta Electronica Sinica, 2020,
48(9): 1711-1719.]
[2]
DENG Y, ZHENG X, ZHANG M, et al. Scenario-based
test
reduction and prioritization for multi-module
autonomous driving systems[C]//Proceedings of the 30th
ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software
Engineering, 2022: 82-93.
[3]宋晓琳,盛鑫,曹昊天,等.基于模仿学习和强化学习的智能车辆换道行为决策[J].汽车工程,2021,43(1):
59-67. [SONG X L, SHENG X, CAO H T, et al. Lane
change behavior decision-making of intelligent vehicle
based on imitation learning and reinforcement learning
[J]. Automotive Engineering, 2021, 43(1): 59-67.]
[4] PENG Y, TAN G, SI H. RTA-IR: A runtime assurance
framework for behavior planning based on imitation
learning and responsibility-sensitive safety model[J].
Expert Systems with Applications, 2023, 232: 120824.
[5]周卫林,王玉龙,裴锋,等.基于分段学习模型的自动驾驶行为决策算法研究[J].中国公路学报,2022,35
(6): 324-338. [ZHOU W L, WANG Y L, PEI F, et al.
Decision algorithm for autonomous driving behavior
based on piecewise learning model[J]. China Journal of
Highway and Transport, 2022, 35(6): 324-338.]
[6]李伟东,马草原,史浩,等.基于分层强化学习的自动驾驶决策控制算法[J/OL]. 吉林大学学报(工学版).
(2023-12-19)[2025-07-10]. https://doi.org/10.13229/j.
cnki.jdxbgxb.20230891. [LI W D, MA C Y, SHI H, et al.
An automatic driving decision control algorithm based on
hierarchical reinforcement learning[J/OL]. Journal of
Jilin University (Engineering and Technology Edition),
(2023-12-19)[2025-07-10]. https://doi.org/10.13229/j.
cnki.jdxbgxb.20230891.]
[7]李传耀,张帆,王涛,等.基于深度强化学习的道路交叉口生态驾驶策略研究[J].交通运输系统工程与信息, 2024, 24(1): 81-92. [LI C Y, ZHANG F, WANG T,
et al. Signalized intersection eco-driving strategy based
on deep reinforcement learning[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2024, 24(1): 81-92.]
[8]
唐斌,刘光耀,江浩斌,等.基于柔性演员-评论家算法的决策规划协同研究[J].交通运输系统工程与信息,
2024, 24(2): 105-113, 187. [TANG B, LIU G Y, JIANG
HB, et al. Collaborative study of decision-making and
trajectory planning for autonomous driving based on
soft acto-critic algorithm[J]. Journal of Transportation
Systems Engineering and Information Technology, 2024,
24(2): 105-113, 187.]
[9]
贺正冰.大语言模型在道路交通领域应用:创新与挑战[J]. 交通运输工程与信息学报,2025, 23(1): 85-92.
[HE Z B. Large language models in road transportation:
Innovations and challenges[J]. Journal of Transportation
Engineering and Information, 2025, 23(1): 85-92.]
[10] 王祥, 谭国真,彭衍飞,等.基于语言推理与认知记忆的自动驾驶决策模型[J/OL]. 吉林大学学报(工学版).
(2024-07-30)[2025-07-10]. https://doi.org/10.13229/j.
cnki.jdxbgxb.20240606. [WANG X, TAN G Z, PENG Y
F, et al. Autonomous driving decision-making model
based on language reasoning and cognitive memory.[J/
OL]. Journal of Jilin University (Engineering and
Technology Edition). (2024-07-30)[2025-07-10]. https:
//doi.org/10.13229/j.cnki.jdxbgxb.20240606.]
[11] FU D, LI X, WEN L, et al. Drive like a human:
Rethinking autonomous driving with large language
models[C]//2024 IEEE/CVF Winter Conference on
Applications of Computer Vision Workshops (WACVW),
IEEE, 2024: 910-919.
[12] CHEN X, PENG M, TIU P H, et al. GenFollower:
Enhancing car-following prediction with large language
models[J]. IEEE Transactions on Intelligent Vehicles,
2024: 1-11 .
[13] HUANG Y, SANSOM J, MA Z, et al. DriVLMe:
Enhancing llm-based autonomous driving agents with
embodied and social experiences[C]//2024 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2024: 3153-3160.
[14] SHAO H, WANG L, CHEN R, et al. Safety-enhanced
autonomous driving using interpretable sensor fusion
transformer[C]//Conference on Robot Learning. PMLR,
2023: 726-737.
|