交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (4): 147-161.DOI: 10.16097/j.cnki.1009-6744.2025.04.015

• 智能交通系统与信息技术 • 上一篇    下一篇

无人机航拍视角下密集场景非机动车小目标检测方法

郑展骥1 ,冯昌奎1 ,赵杨洋2 ,凃强1,3 ,张河山*1 ,徐进1   

  1. 1. 重庆交通大学,交通运输学院,重庆400074;2.公安部交通管理科学研究所,江苏无锡214151; 3. 重庆市城投金卡信息产业(集团)股份有限公司,博士后科研工作站,重庆400074
  • 收稿日期:2025-01-28 修回日期:2025-05-18 接受日期:2025-06-10 出版日期:2025-08-25 发布日期:2025-08-25
  • 作者简介:郑展骥(1990—),男,浙江瑞安人,副教授,博士。
  • 基金资助:
    中国博士后科学基金面上项目(2022M710547);教育部人文社会科学研究青年基金项目 (24YJCZH412)。

Non-motorized Small Target Detection Method for Dense Scenes Under UAV Aerial Photography Perspective

ZHENG Zhanji1, FENG Changkui1, ZHAO Yangyang2, TU Qiang1,3, ZHANG Heshan*1, XU Jin1   

  1. 1. School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China; 2. Traffic Management Research Institute of the Ministry of Public Security, Wuxi 214151, Jiangsu, China; 3. Postdoctoral Research Station, Chongqing City Investment & Golden Card Information Industry (Group) Co Ltd, Chongqing 400074, China
  • Received:2025-01-28 Revised:2025-05-18 Accepted:2025-06-10 Online:2025-08-25 Published:2025-08-25
  • Supported by:
    China Postdoctoral Science Foundation(2022M710547);Youth Fund Project for Humanities and Social Sciences Research of China's Ministry of Education (24YJCZH412)。

摘要: 针对无人机航拍图像中背景丰富,多个小目标聚集导致的误检、漏检,以及置信度不高等问题,本文提出一种改进YOLOX(YouOnlyLookOnceX)的目标检测算法。首先,设计一种提取高频特征信息的注意力机制(LE-MSA),避免小目标特征消失在冗余信息中;其次,为防止样本类别不均衡导致检测效果差的问题,引入VarifocalLoss损失函数,与BCEWithLogitsLoss损失函数共同参与分类准确度和目标框定位精度的提升;最后,提出一种包含自适应小目标增强和区域增强方法在内的多策略数据增强方法,提高模型的泛化能力。试验结果表明,LE-YOLOX算法表现出良好的检测能力,其检测精度达到90.78%,优于Faster R-CNN(71.30%)、YOLOv5(88.15%)、YOLOv8(87.63%)、YOLOv10(86.1%)和YOLOX(87.82%);同时,改进YOLOX在实际检测时能够有效解决无人机航拍图像下密集小目标的误检和漏检问题,具有较强的小目标识别和密集目标处理能力。

关键词: 智能交通, 密集小目标检测, YOLOX, 无人机航拍图像, 注意力机制

Abstract: Aiming at the problems of misdetection, omission and low confidence caused by the rich background and the aggregation of multiple small targets in UAV aerial images, this paper proposes a target detection algorithm to improve YOLOX. First, an attention mechanism (LE-MSA) is designed to avoid small target features disappearing into redundant information by extracting high-frequency feature information. Second, in order to prevent the problem of poor detection effect caused by the imbalance of sample categories, a VarifocalLoss loss function is introduced to participate in the improvement of classification accuracy and target frame localization accuracy, together with the BCEWithLogitsLoss loss function. Finally, a multi-strategy data enhancement method, including adaptive small target enhancement and region enhancement methods, is proposed to improve the generalization ability of the model. The experimental results show that the LE-YOLOX algorithm exhibits good detection ability with a detection accuracy of 90.78%, which is better than Faster R-CNN (71.30%), YOLOv5 (88.15%), YOLOv8 (87.63%), YOLOv10 (86.1%) and YOLOX (87.82%). Meanwhile, the improved YOLOX is able to solve the problem of misdetection and missed detection of dense small targets under UAV aerial images in actual detection effectively, and it has strong small target recognition and dense target processing capabilities.

Key words: intelligent transportation, dense small target detection, YOLOX, UAV aerial images, attention mechanism

中图分类号: