[1] FASTER R. Towards real-time object detection with
region proposal networks[J]. Advances in Neural
Information Processing Systems, 2015(28): 2969239
2969250.
[2] REDMON J. You only look once: Unified, real-time
object detection[C]. Las Vegas: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2016.
[3] TERVEN J, CORDOVA-ESPARZA D M, ROMERO
GONZALEZ J A. A comprehensive review of YOLO
architectures in computer vision: From YOLOV1 to
YOLOV8 and YOLO-NAS[J]. Machine Learning and
Knowledge Extraction, 2023, 5(4): 1680-1716.
[4] LONG X, DENG K, WANG G, et al. PP-YOLO: An
effective and efficient implementation of object detector
[EB/OL]. arXiv: 2007.12099, (2020-07-23) [2024-09
16]. https://arxiv.org/abs/2007.12099
[5] GE Z, LIU S, WANG F, et al. Yolox: Exceeding YOLO
series in 2021[EB/OL]. arXiv: 2107.08430, (2021-08
06) [2024-09-16]. https://arxiv.org/abs/2107.08430.
[6]张河山,范梦伟,谭鑫,等.基于改进YOLOX的无人机航拍图像密集小目标车辆检测[J/OL].吉林大学学报(工学版), (2023-12-28) [2024-09-16]. https://doi.org/
10.13229/j.cnki.jdxbgxb.20230779. [ZHANG H S, FAN
MW, TAN X, et al. Dense small object vehicle detection
in UAV aerial images using improved YOLOX[J/OL].
Journal of Jilin University(Engineering and Technology
Edition), (2023-12-28) [2024-09-16]. https://doi.org/
10.13229/j.cnki.jdxbgxb.20230779.]
[7]
HOU Q, ZHOU D, FENG J. Coordinate attention for
efficient
mobile
network
design[C]
Piscataway:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021.
[8] SHEN C, MA C, GAO W. Multiple attention mechanism
enhanced YOLOX for remote sensing object detection[J].
Sensors, 2023, 23(3): 1261-1261.
[9]
罗为明,李旭,孙正良,等.基于高效卷积注意力特征融合的道路目标检测[J].东南大学学报(自然科学版),
2024, 54(4): 1005-1013. [LUO W M, LI X, SUN Z L,
et al. Object detection in road based on efficient
convolutional attention feature fusion[J]. Journal of
Southeast University(Natural Science Edition), 2024, 54
(4): 1005-1013.]
[10] 沈瑜, 李阳阳,李博昊,等.基于感知增强与多尺度融合的小目标车辆检测[J/OL].北京航空航天大学学报,
(2024-07-19) [2024-09-16]. https://doi.org/10.13700/j.
bh.1001-5965.2024.0124. [SHEN Y, LI Y Y, LI B H,
et al. Small target vehicle detection based on perceptual
enhancement and multi scale fusion[J/OL]. Journal of
Beijing University of Aeronautics and Astronautics,
(2024-07-19) [2024-09-16]. https://doi.org/10.13700/j.
bh.1001-5965.2024.0124.]
[11] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection
and alignment using multitask cascaded convolutional
networks[J]. IEEE Signal Processing Letters, 2016, 23
(10): 1499-1503.
[12] 宋存利,柴伟琴,张雪松.基于改进YOLOv5算法的道路小目标检测[J].系统工程与电子技术,2024,46(10):
3271-3278. [SONG C L, CHAI W Q, ZHANG X S. Road
small target detection based on improved YOLO v5
algorithm[J]. Systems Engineering and Electronics, 2024,
46(10): 3271-3278.]
[13] 张河山, 谭鑫,范梦伟,等.无人机高空航拍视角下小尺度车辆精确检测方法[J].交通运输系统工程与信息, 2024, 24(3): 299-309. [ZHANG H S, TAN X, FAN
MW, et al. Accurate detection method of small-scale
vehicles
from perspective of unmanned aerial
vehicle High-altitude aerial photography[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2024, 24(3): 299-309.]
[14] ANDREW W, GREATWOOD C, BURGHARDT T.
Aerial animal biometrics: Individual friesian cattle
recovery and visual identification via an autonomous
UAV with onboard deep inference[C]. Macau: 2019
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2019.
[15] 艾青林,杨佳豪,崔景瑞.基于自适应增殖数据增强与全局特征融合的小目标行人检测[J].浙江大学学报(工学版), 2023, 57(10): 1933-1944, 1976. [AI Q L, YANG
J H, CUI J R. Small target pedestrian detection based on
adaptive proliferation data enhancement and global
feature fusion[J]. Journal of Zhejiang University
(Engineering Science), 2023, 57(10): 1933-1944, 1976.]
[16] KISANTAL M. Augmentation for small object detection
[J/OL]. arXiv: 1902.07296, (2019-02-19) [2024-09
16]. https://arxiv.org/abs/1902.07296.
[17] HU J, SHEN L, SUN G. Squeeze-and-excitation networks
[C]. Salt Lake City: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, IEEE,
2018.
[18] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional
block attention module[C]. Munich: Proceedings of the
European Conference on Computer Vision (ECCV), 2018.
[19] LIU Y, SHAO Z, TENG Y, et al. NAM: Normalization
based attention module[J/OL]. arXiv: 2111.12419,
(2021-11-24) [2024-09-16].
https://arxiv.org/abs/
2111.12419.
[20] SHORTEN C, KHOSHGOFTAAR T M. A survey on
image data augmentation for deep learning[J]. Journal of
Big Data, 2019, 6(1): 1-48.
[21] FRID-ADAR M, KLANG E, AMITAI M, et al. Synthetic
data augmentation using GAN for improved liver lesion
classification[C].
Washington:
2018 IEEE 15th
International Symposium on Biomedical Imaging (ISBI
2018), IEEE, 2018.
[22] INOUE H. Data augmentation by pairing samples for
images
classification[J].
arXiv
Preprint
arXiv:
1801.02929, 2018.
[23] WONG S C, GATT A, STAMATESCU V, et al.
Understanding data augmentation for classification:
When to warp?[C]. Queensland: 2016 International
Conference on Digital Image Computing: Techniques and
Applications (DICTA), IEEE, 2016.
|