[1] HUANG Y, DU J, YANG Z, et al. A survey on trajectory
prediction methods for autonomous driving[J]. IEEE
Transactions on Intelligent Vehicles, 2022, 7(3): 652
674.
[2]季学武,费聪,何祥坤,等.基于LSTM网络的驾驶意图识别及车辆轨迹预测[J].中国公路学报,2019,32(6):
34-42. [JI X W, FEI C, HE X K, et al. Driving intention
recognition and vehicle trajectory prediction based on
LSTM networks[J]. China Journal of Highway and
Transport, 2019, 32(6): 34-42.]
[3]
方华珍,刘立,肖小凤,等.混合示教长短时记忆网络的车辆轨迹预测研究[J].交通运输系统工程与信息,
2023, 23(4): 80-87. [FANG H Z, LIU L, XIAO X F,
et al. Vehicle trajectory prediction based on mixed
teaching force long short-term memory[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2023, 23(4): 80-87.]
[4]温惠英,张昕怡,黄俊达,等.考虑动态交互作用的智能车辆轨迹预测[J].交通运输系统工程与信息,2024,
24(4): 60-68. [WEN H Y, ZHANG X Y, HUANG J D,
et al. Intelligent vehicle trajectory prediction considering
dynamic interactions[J]. Journal of Transportation
Systems Engineering and Information Technology, 2024,
24(4): 60-68.]
[5] XU D, SHANG X, LIU Y, et al. Group vehicle trajectory
prediction with global spatio-temporal graph[J]. IEEE
Transactions on Intelligent Vehicles, 2023, 8(2): 1219
1229.
[6] SU Y, DU J, LI Y, et al. Trajectory forecasting based
on prior-aware directed graph convolutional neural
network[J].
IEEE Transactions on Intelligent
Transportation Systems, 2022, 23(9): 16773-16785.
[7]杨达,刘家威,郑斌,等.基于时域卷积网络与注意力机制的车辆换道轨迹预测模型[J].交通运输系统工程与信息,2024, 24(2): 114-126. [YANG D, LIU J W,
ZHENG B, et al. A vehicle lane-changing trajectory
prediction model based on temporal convolutional
networks and attention mechanism[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2024, 24(2): 114-126.]
[8]刘占文,李文倩,林杉,等.基于稀疏权重共享的多模
态轨迹预测[J]. 中国公路学报,2023, 36(9): 244-256.
[LIU Z W, LI W Q, LIN S, et al. Multimodal
trajectory prediction based on sparse weight sharing[J].
China Journal of Highway and Transport, 2023, 36(9):
244-256.]
[9]
CHEN X, ZHANG H, HU Y, et al. VNAGT:
Variational
non-autoregressive
graph transformer
network for multi-agent trajectory prediction[J]. IEEE
Transactions on Vehicular Technology, 2023, 72(10):
12540-12552.
[10] MENEGUETTE R, DE GRANDE R, UEYAMA J, et al.
Vehicular edge computing: Architecture, resource
management, security, and challenges[J]. ACM
Computing Surveys (CSUR), 2021, 55(1): 1-46.
[11] GU A, DAO T. Mamba: Linear-time sequence modeling
with selective state spaces[J]. arXiv Preprint arXiv:
2312.00752, 2023.
[12] HANG P, LV C, HUANG C, et al. An integrated
framework of decision making and motion planning for
autonomous vehicles considering social behaviors[J].
IEEE Transactions on Vehicular Technology, 2020, 69
(12): 14458-14469.
[13] LI G, LI Z, KNOOP V L, et al. Unravelling uncertainty in
trajectory prediction using a non-parametric approach[J].
Transportation Research Part C: Emerging Technologies,
2024, 163: 104659.
[14] ZHANG H, TAN X, FAN M, et al. Accurate detection
and tracking of small-scale vehicles in high-altitude
unmanned aerial vehicle bird-view imagery[J]. Journal of
Advanced Transportation, 2023, 2023(1): 5384844.
[15] SHENG Z, XU Y, XUES, et al. Graph-based spatial
temporal
convolutional
network
for
vehicle
trajectory prediction in autonomous driving[J]. IEEE
Transactions on Intelligent Transportation Systems,
2022, 23(10): 17654-17665.
[16] LI X, YING X, CHUAH M C. Grip: Graph-based
interaction-aware trajectory prediction[C]//2019 IEEE
Intelligent Transportation Systems Conference (ITSC),
IEEE, 2019: 3960-3966.
[17] HUANG Y, BI H, LI Z, et al. Stgat: Modeling spatial
temporal
interactions
prediction[C]//Proceedings
for
of
human trajectory
the
IEEE/CVF
International Conference on Computer Vision, 2019:
6272-6281.
|