[1]MOREIRA M L, GAMA J, FEFFEIRA M, et al.
Predicting taxi-passenger demand using streamingdata[J].
IEEE Transactions on Intelligent Transportation, 2013,
14(3): 1393-1402.
[2] 林永杰,邹难.基于运营系统的出租车出行需求短时预测模型[J]. 东北大学学报(自然科学版),2016,37(9):
1235-1240. [LIN Y J, ZOU N. Short-term prediction
model of taxi passenger demand based on operation
systems[J]. Journal of Northeastern University (Natural
Science), 2016, 37(9): 1235-1240.]
[3]谷远利,李萌,芮小平,等.基于深度学习的网约车供需缺口短时预测研究[J].交通运输系统工程与信息,
2019, 19(2): 223-230. [GU Y L, LI M, RUI X P, et al.
Short-term forecasting of supply-demand gap under
online car-hailing services based on deep learning[J].
Journal of Transportation Systems Engineering and
Information Technology, 2019, 19(2): 223-230.]
[4]
GENG X, LI Y, WANG L, et al. Spatiotemporal multi
graph convolution network for ride-hailing demand
forecasting[C]//Proceedings of the AAAI Conference on
Artificial Intelligence, 2019.
[5]
YAO H, WU F, KE J, et al. Deep multi-view spatial
temporal network for taxi demand prediction[C]//
Proceedings of the AAAI Conference on Artificial
Intelligence, 2018.
[6] KE J, QIN X, YANG H, et al. Predicting origin
destination ride-sourcing demand with a spatio-temporal
encoder-decoder residual multi-graph convolutional
network[J]. Transportation Research Part C: Emerging
Technologies, 2021, 122: 102858.
[7] CHEN X M, ZAHIRI M, ZHANG S. Understanding
ridesplitting behavior of on-demand ride services: An
ensemble learning approach[J]. Transportation Research
Part C: Emerging Technologies, 2017, 76: 51-70.
[8] LI W, PU Z, LI Y, et al. Characterization of ridesplitting
based on observed data: A case study of Chengdu, China
[J].
Transportation Research Part C: Emerging
Technologies, 2019, 100: 330-353.
[9]
GHAFFAR A, MITRA S, HYLAND M. Modeling
determinants of ridesourcing usage: A census tract-level
analysis of Chicago[J]. Transportation Research Part C:
Emerging Technologies, 2020, 119: 102769.
[10] TU M, LI W, ORFILA O, et al. Exploring nonlinear
effects of the built environment on ridesplitting:
Evidence from Chengdu[J]. Transportation Research Part
D: Transport and Environment, 2021, 93: 102776.
[11] WANG J, WANG X, YANG S, et al. Predicting the
matching probability and the expected ride/shared
distance for each dynamic ridepooling order: A
mathematical modeling approach[J]. Transportation
Research Part B: Methodological, 2021, 154: 125-146.
[12] 胡宇娇. 基于集成学习的网约车拼车需求预测研究[D]. 西安: 长安大学, 2024. [HU Y J. Research on ride
sharing demand prediction based on ensemble learning
[D]. Xi'an: Chang'an University, 2024.]
[13] LI Y, SUN H, LV Y, et al. Ridesplitting demand
prediction via spatiotemporal multi-graph convolutional
network[J]. Expert Systems with Applications, 2024, 247:
123207.
[14] 王迪, 李颖, 胡宇娇,等.基于机器学习的网约车拼车需求预测研究[J]. 汽车安全与节能学报,2024,15(5):
723-731. [WANG D, LI Y, HU Y J, et al. Research on
carpooling demand prediction study based on machine
learning[J]. Journal of Automotive Safety and Energy,
2024, 15(5): 723-731.]
|