[1] SHAIKH P W, EL-ABD M, KHANANFER M, et al. A
Review on swarm intelligence and evolutionary
algorithms for solving the traffic signal control problem
[J]. IEEE Transactions on Intelligent Transportation
Systems, 2022, 23(1): 48-63.
[2] MOHAMMAD N, ATHARVA N, LIANA G, et al.
Reinforcement learning in urban network traffic signal
control: A systematic literature review [J]. Expert
Systems with Applications, 2022, 199: 116830.1
116830.32.
[3] GENDERS W, RAZAVI S. Asynchronous n-step q
learning adaptive traffic signal control [J]. Journal of
Intelligent Transportation Systems, 2019, 23(4): 319
331.
[4]张玺君,聂生元,李喆,等.基于自注意力机制的深度强化学习交通信号控制[J].交通运输系统工程与信息, 2024, 24(2): 96-104. [ZHANG X J, NIE S Y, LI Z,
et al. Traffic signal control with deep reinforcement
learning and self-attention mechanism[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2024, 24(2): 96-104.]
[5] XIAO N, YU L, YU J, et al. A cold-start-free
reinforcement learning approach for traffic signal control
[J]. Journal of Intelligent Transportation Systems, 2021,
26(4): 476-85.
[6]
CHU T, WANG J, CODCA L, et al. Multi-agent deep
reinforcement learning for large-scale traffic signal
control[J].
IEEE
Transactions
on
Intelligent
Transportation Systems, 2019, 21(3): 1086-1095.
[7] ZHU H , FENG J, SUN F, et al. Sharing control
knowledge among heterogeneous intersections: A
distributed arterial traffic signal coordination method
using multi-agent reinforcement learning[J]. IEEE
Transactions on Intelligent Transportation Systems,
2025, 26(2): 2760-2776.
[8]陈喜群,朱奕璋,谢宁珂,等.基于异构多智能体自注意力网络的路网信号协调顺序优化方法[J].交通运输系统工程与信息,2024,24(3): 114-126. [CHEN X Q,
ZHU Y Z, XIE N K, et al. Coordinated sequential
optimization for network-wide traffic signal control based
on heterogeneous multi-agent transformer[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2024, 24(3): 114-126.]
[9]
马东方,陈曦,吴晓东,等.基于强化学习的干线信号混合协同优化方法[J]. 交通运输系统工程与信息,
2022, 22(2): 145-153. [MA D F, CHEN X, WU X D,
et al. Mixed-coordinated decision-making method for
arterial signals based on reinforcement learning[J].
Journal of Transportation Systems Engineering and
Information Technology, 2022, 22(2): 145-153.]
[10] 郑晔, 郭仁忠,马丁,等.面向地理路网的交通信号智能协同控制方法[J]. 测绘学报, 2021, 50(9): 1203
1210. [ZHENG X, GUO R Z, MA D, et al. Multi-agent
cooperative control for traffic signal on geographic road
network[J] Acta Geodaetica et Cartographica Sinica,
2021, 50(9): 1203-1210.]
[11] LI Y, ZHANG Y, LI X, et al. Regional multi-agent
cooperative reinforcement learning for city-level traffic
grid signal control[J]. IEEE/CAA Journal of Automatica
Sinica, 2024, 11(9): 1987-1998.
[12] TAN T, BAO F, DENG Y, et al. Cooperative deep
reinforcement learning for large-scale traffic grid signal
control [J]. IEEE Transactions on Cybernetics, 2020, 50
(6): 2687-2700.
[13] 胡立伟, 赵雪亭,杨锦青,等.基于双层规划的城市交通拥塞疏导优化研究[J].交通运输系统工程与信息,
2021, 21(5): 222-227, 234. [HU L W, ZHAO X T,
YANG J Q, et al. Urban traffic congestion mitigation and
optimization study based on two-level programming[J].
Journal of Transportation Systems Engineering and
Information Technology, 2021, 21(5): 222-227, 234.]
[14] NG A Y, HARADA D, RUSSELL S. Policy invariance
under reward transformations: Theory and application to
reward shaping[C]. Bled: International Conference on
Machine Learning, 1999.
[15] Transportation Research Board. The highway capacity
manual 7th Edition: A guide for multi-modal mobility
analysis[M]. USA: National Academies Press, 2016.
[16] ZHANG G, WANG Y. Optimizing minimum and
maximum green time settings for traffic actuated control
at isolated intersections[J]. IEEE Transactions on
Intelligent Transportation Systems, 2011, 12(1): 164
173.
[17] WEI H, XU N, ZHANG H, et al. Colight: Learning
network-level cooperation for traffic signal control[C].
Beijing: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management,
2019.
[18] CHEN C, WEI H, XU N, et al. Toward a thousand lights:
Decentralized deep reinforcement learning for large
scale traffic signal control[C]. New York: Proceedings of
the AAAI Conference on Artificial Intelligence, 2020.
|