[1]
NING L, ZHOU M, HOU Z, et al. Deep deterministic
policy gradient for high-speed train trajectory
optimization[J].
IEEE Transactions on Intelligent
Transportation Systems, 2021, 23(8): 11562-11574.
[2] LU S, HILLMANSEN S, HO T K, et al.Single-train
trajectory
optimization[J].
IEEE Transactions on
Intelligent Transportation Systems, 2013, 14(2): 743
750.
[3]
赵东升,赵鹏,姚向明,等.基于工况序列寻优的列车节能操纵策略优化[J]. 交通运输系统工程与信息,
2024, 24(2): 157-165. [ZHAO D S, ZHAO P, YAO X M.
An energy-efficient train driving strategy based on
regime
sequences
optimization[J].
Journal
of
Transportation Systems Engineering and Information
Technology, 2024, 24(2): 157-165.]
[4] CAO Y, WANG Z C, LIUF, et al. Bio-inspired speed
curve optimization and sliding mode tracking control for
subway trains[J]. IEEE Transactions on Vehicular
Technology, 2019, 68(7): 6331-6342.
[5]林俊亭,李茂林,邱晓辉.延误场景下列车速度曲线与动态调度联合优化方法[J].交通运输系统工程与信息, 2025, 25(1): 173-187. [LIN J T, LI M L, QIU X H. A
joint optimization method of train speed curves and
dynamic scheduling under delay scenarios[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2025, 25(1): 173-187.]
[6]楚彭子,袁建军,陈义军.常导高速磁浮列车节能速度曲线鲁棒优化研究[J].铁道科学与工程学报,2023,20
(11): 4062- 4073. [CHU P Z, YUAN J J, CHEN Y J.
Robust optimization of energy-efficient speed profile for
normal high-speed maglev[J]. Journal of Railway Science
and Engineering, 2023, 20(11): 4062-4073.]
[7]
CHEN X, LI K, ZHANG L, et al. Robust optimization of
energy-saving train trajectories under passenger load
uncertainty based on P-NSGA-II[J]. IEEE Transactions
on Transportation Electrification, 2022, 9(1): 1826-1844.
[8] FERNANDEZ-RODRIGUEZ
A,
FERNANDEZ
CARDADOR A, CUCALA A P, et al. Design of robust
and energy-efficient ATO speed profiles of metropolitan
lines considering train load variations and delays[J].
IEEE Transactions on Intelligent Transportation
Systems, 2015, 16(4): 2061-2071.
[9]
WANG L, YANG L, GAO Z, et al. Robust train speed
trajectory optimization: A stochastic constrained shortest
path approach[J]. Frontiers of Engineering Management,
2017, 4(4): 408-417.
[10] ZHOU K, SONG S, XUE A, et al. Smart train operation
algorithms based on expert knowledge and reinforcement
learning[J]. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 2020, 52(2): 716-727.
[11] LI G, OR S W, CHAN K W. Intelligent energy-efficient
train
trajectory
optimization approach based on
supervised reinforcement learning for urban rail transits
[J]. IEEE Access, 2023, 11: 31508-31521.
[12] HOBEROCK L L. A survey of longitudinal acceleration
comfort studies in ground transportation vehicles[R].
Austin: Council for Advanced Transportation Studies,
1976.
[13] TAYLOR M E, STONE P. Transfer learning for
reinforcement learning domains: A survey[J]. Journal of
Machine Learning Research, 2009, 10(7): 1633-1685.
[14] DEVLIN S, KUDENKO D. Theoretical considerations of
potential-based reward shaping for multi-agent systems
[C].
Taipei:
Tenth International Conference on
Autonomous Agents and Multi-Agent Systems, 2011.
|