[1] LIU H, LUO X, TANG T, et al. A hierarchical control
approach for virtual coupling in metro trains[J].
Computer-Aided Civil and Infrastructure Engineering,
2024, 39(9): 1318-1336.
[2]罗啸林,唐涛,林炳跃,等.一种缩短虚拟编组列车追踪间距的鲁棒模型预测控制方法[J].铁道学报,2023,
45(8): 68-76. [LUO X L, TANG T, LIN B Y, et al. A
robust model predictive control approach for reducing
following distance between virtually coupled unit trains
[J]. Journal of the China Railway Society, 2023, 45(8):
68-76.]
[3]林俊亭,倪铭君.基于扩张状态观测器的虚拟编组触发模型预测控制[J].交通运输系统工程与信息,
2023, 23(4): 134-146. [LIN J T, NI M J. Trigger model
predictive control based on extended state observers for
virtual coupling[J]. Journal of Transportation Systems
Engineering and Information Technology, 2023, 23(4):
134-146.]
[4] LIU Y, ZHOU Y, SU S, et al. Control strategy for stable
formation of high-speed virtually coupled trains with
disturbances and delays[J]. Computer-Aided Civil and
Infrastructure Engineering, 2023, 38(5): 621-639.
[5]
ZHAO H, DAI X, ZHANG Q, et al. Robust event
triggered model predictive control for multiple high
speed trains with switching topologies[J]. IEEE
Transactions on Vehicular Technology, 2020, 69(5):
4700-4710.
[6] KWON J W, CHWA D. Adaptive bidirectional platoon
control using a coupled sliding mode control method[J].
IEEE Transactions on Intelligent Transportation
Systems, 2014, 15(5): 2040-2048.
[7] GAO B, BU B, WANG X. A comprehensive resilient
control strategy for CBTC systems through train-to-train
communications under malicious attacks[J]. IEEE
Transactions on Intelligent Transportation Systems,
2022, 23(11): 21015-21033.
[8]李中奇,衷玲玉,杨辉.虚拟编组列车的分布式协同预测控制[J]. 交通运输工程学报,2024, 24(5): 362-378.
[LI Z Q, ZHONG L Y, YANG H. Distributed cooperative
predictive control of virtual coupled trains[J]. Journal of
Traffic and Transportation Engineering, 2024, 24(5):
362-378.]
[9]
GAO S G, DONG H R, NING B, et al. Cooperative
adaptive bidirectional control of a train platoon for
efficient utility and string stability[J]. Chinese Physics B,
2015, 24(9): 090506.
[10] ZHOU Y, WANG M, AHN S. Distributed model
predictive control approach for cooperative car-following
with
guaranteed
local
and string stability[J].
Transportation Research Part B: Methodological, 2019,
128: 69-86.
[11] GONG S, DU L. Cooperative platoon control for a mixed
traffic flow including human drive vehicles and
connected and autonomous vehicles[J]. Transportation
Research Part B: Methodological, 2018, 116: 25-61.
[12] LÖFBERG J. Minimax approaches to robust model
predictive control[M]. Linkopings Universitet (Sweden),
2003.
[13] NAUS G J L, VUGTS R P A, PLOEG J, et al. String
stable CACC design and experimental validation: A
frequency-domain approach[J]. IEEE Transactions on
Vehicular Technology, 2010, 59(9): 4268-4279.
[14] ZHOU Y, AHN S. Robust local and string stability for a
decentralized car following control strategy for connected
automated vehicles[J]. Transportation Research Part B:
Methodological, 2019, 125: 175-196.
[15] LI J, TIAN D, ZHOU J, et al. Distributed robust model
predictive control for virtual coupling under structural
and external uncertainty[J]. IEEE Transactions on
Intelligent Transportation Systems, 2024, 25(8): 8751
8769.
[16] SONG H, SHANGGUAN W, QIU W, et al. Two-stage
optimal trajectory planning based on resilience
adjustment model for virtually coupled trains[J]. IEEE
Transactions on Intelligent Transportation Systems,
2023, 24(12): 15219-15235.
|