交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (4): 13-23.DOI: 10.16097/j.cnki.1009-6744.2025.04.002

• 综合交通运输体系论坛 • 上一篇    下一篇

低碳视角下轨道交通与土地利用供需协同发展研究

谭德明1a ,陈可沛1b ,吴大维1c ,李延欢2 ,胡四新1b ,张彩平*1a   

  1. 1. 南华大学,a.经济管理与法学学院,b.松霖建筑与设计艺术学院,c.资源环境与安全工程学院,湖南衡阳421101; 2. 湖南交通规划勘察设计院有限公司,长沙410219)
  • 收稿日期:2025-01-24 修回日期:2025-05-21 接受日期:2025-05-26 出版日期:2025-08-25 发布日期:2025-08-25
  • 作者简介:谭德明(1976—),男,湖南株洲人,副研究员,博士。
  • 基金资助:
    国家社科基金后期资助项目(23FGLB011);湖南省自然科学基金面上项目 (2024JJ5328)。

Rail Transit and Land Use Supply and Demand Coordinated Development from Low-carbon Perspective

TAN Deming1a, CHEN Kepei1b, WU Dawei1c, LI Yanhuan2, HU Sixin1b, ZHANG Caiping*1a   

  1. 1a. School of Economics, Management and Law, 1b. Songlin School of Architecture and Design Arts, 1c. School of Resources, Environment and Safety Engineering, University of South China, Hengyang 421101, Hunan, China; 2. Hunan Communications Planning, Survey & Design Institute Co Ltd, Changsha 410219, China
  • Received:2025-01-24 Revised:2025-05-21 Accepted:2025-05-26 Online:2025-08-25 Published:2025-08-25
  • Supported by:
    National Social Science Foundation(23FGLB011);Natural Science Foundation of Hunan Province, China (2024JJ5328)。

摘要: 轨道交通和土地利用作为城市空间治理体系的重要组成部分,明晰两者的空间匹配规律,对推动城市绿色低碳发展具有重要意义。本文构建以人口为中介变量的轨道交通-土地利用供需模型,设置自然发展和低碳发展两种情景;基于轨道交通兴趣点数据(POI)、土地利用/土地覆盖数据(LULC)及人口热力大数据,运用客流潜力模型和反向传播神经网络(BP)预测客流供需;最后,运用泰森多边形空间分析法与耦合度模型,对比分析两种情景下深圳市轨道交通与土地利用耦合情况,识别耦合失调原因。结果表明:两种情景下,轨道交通与土地利用耦合度均值均稳定在[0.7,0.8],且在空间上总体呈现“西高东低”“中间高,四周低”的特征,耦合失调的站点多呈现轨道交通供给能力弱于人口出行需求的供需失衡。相较于自然发展情景,低碳发展情景下,58.63%的泰森多边形单元耦合度占优,验证了低碳发展情景对提升深圳市轨道交通客流和降低交通领域碳排放的积极意义。但由于中心城区人口密度下降,低碳发展情景出现了更多Z<1的失调站点,导致人口出行需求弱于轨道交通供给的局部供需失衡。研究结果可为超大城市降低交通领域碳排放和协调轨道交通建设与土地集约利用提供参考。

关键词: 城市交通, 协同发展, 供需模型, 轨道交通, 低碳

Abstract: As vital components of urban spatial governance systems, rail transit and land use play critical roles in advancing urban green low-carbon development. This study proposes a rail transit and land use supply-demand model using population as the intermediary variable, with two scenarios established: natural development and low-carbon development. Integrating multi-source data including station Point of Interest (POI) data, Land Use and Land Cover (LULC) data, and population thermal dynamics, this study uses a passenger flow potential model and BP neural network to predict supply-demand relationships of passenger flow. Through Voronoi polygon spatial analysis and coupling degree modeling, this study comparatively examines the rail transit and land use coupling characteristics in Shenzhen under both scenarios and identifies mismatch causes. The results demonstrate that: the mean coupling degree between rail transit and land use remains stable within [0.7, 0.8] under both scenarios, exhibiting spatial patterns of "higher values in western regions versus lower values in eastern regions" and "central agglomeration with peripheral dispersion". Coupling mismatch primarily manifests as insufficient rail transit supply capacity relative to population travel demand. Compared with the natural development scenario, 58.63% of Voronoi units achieve superior coupling degrees under the low carbon development scenario, demonstrating its effectiveness in enhancing rail transit passenger flow and reducing transportation carbon emissions. However, decreased population density in central urban areas under the low-carbon scenario generates more mismatched stations (Z<1) characterized by weaker population travel demand relative to rail transit supply capacity. These findings provide strategic references for megacities to coordinate rail transit construction with intensive land use while achieving carbon emission reduction in transportation systems.

Key words: urban traffic, coordinated development, supply-demand model, rail transit, low-carbon

中图分类号: