交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (4): 96-103.DOI: 10.16097/j.cnki.1009-6744.2025.04.010

• 智能交通系统与信息技术 • 上一篇    下一篇

异质交通流下交叉口信号及车辆轨迹融合控制模型

王海涌* ,张丹,王孟琳,田爱爱   

  1. 兰州交通大学,电子与信息工程学院,兰州730070
  • 收稿日期:2025-05-06 修回日期:2025-06-17 接受日期:2025-07-07 出版日期:2025-08-25 发布日期:2025-08-25
  • 作者简介:王海涌(1974—),男,甘肃会宁人,教授,博士。
  • 基金资助:
    国家自然科学基金(52062028)。

Integrated Control Model for Intersection Signal and Vehicle Trajectory Under Heterogeneous Traffic Flows

WANG Haiyong*, ZHANG Dan,WANG Menglin,TIAN Aiai   

  1. School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2025-05-06 Revised:2025-06-17 Accepted:2025-07-07 Online:2025-08-25 Published:2025-08-25
  • Supported by:
    National Natural Science Foundation of China (52062028)。

摘要: 在异质交通流背景下,针对交通信号调度与车辆轨迹规划协同问题,本文提出集信号和轨迹于一体的融合控制模型。该模型采用竞争双深度Q网络算法(Dueling Double Deep Q Network,D3QN),通过深度强化学习技术对交通信号和车辆轨迹进行同步优化,旨在实现交通效率与生态驾驶的双重目标,并基于SUMO(Simulation of Urban Mobility)仿真平台对模型进行全面验证。仿真结果表明:与基准模型相比,单一优化策略虽然能在一定程度上改善交叉口性能,但存在整体效率提升受限的问题;本文提出的融合控制模型结合了宏观交通流与微观车辆行为的优化,使车均延误降低66.99%,燃油消耗减少11.26%,同时CO2等污染物排放量也显著减少。进一步的敏感性分析揭示了系统性能随网联自动驾驶汽车(Connectedand Autonomous Vehicles, CAV)渗透率的变化规律修正:当渗透率达到一定水平后,性能提升幅度逐渐减小,且模型在不同交通流量条件下均展现出稳定的优化效果,这一结果证实了该控制方法在城市交叉口环境中的适应性和鲁棒性。

关键词: 城市交通, 信号控制, 轨迹规划, 交叉口, 异质交通流

Abstract: Under heterogeneous traffic conditions, this study proposes an integrated control model which simultaneously optimizes signals and trajectories to address the coordination problem between traffic signal control and vehicle trajectory planning. The model employs a Dueling Double Deep Q-Network (D3QN) through deep reinforcement learning approach to achieve the dual objectives of improving traffic efficiency and promoting eco-driving. The comprehensive validation of proposed model was conducted using the SUMO simulation platform. The simulation results show that, compared to the baseline model, although single-objective optimization strategies can partially enhance the performance of intersection, there are some limitations in overall efficiency improvement. In contrast, the proposed integrated control model effectively combines the optimization of macroscopic traffic flow with microscopic vehicle behavior adjustment, achieving a 66.99% reduction in average vehicle delay, an 11.26% decrease in fuel consumption, and significant reductions in CO2 and other pollutant emissions. Further sensitivity analyses reveal the performance of system trends under varying CAV penetration rate, indicating that performance gains gradually plateau beyond certain penetration thresholds. Moreover, the model demonstrates stable optimization effects under different traffic demand conditions, confirming its adaptability and robustness for urban intersection environments.

Key words: urban traffic, signal control, trajectory planning, intersection, heterogeneous traffic flow

中图分类号: