[1]孙世超,张琳琳.“出行即服务(MaaS)”核心用户群体的使用意愿机理[J].大连海事大学学报,2024,50(4):89
99. [SUN S C, ZHANG L L. The mechanism of usage
intentions among core user groups in Mobility-as-a
Service[J]. Journal of Dalian Maritime University, 2024,
50(4): 89-99.]
[2]李文翔,程佳楠,刘向龙,等.出行即服务环境下个体出行链碳足迹监测与评估[J].交通运输系统工程与信息, 2023, 23(2): 22-31, 53. [LI W X, CHENG J N, LIU
X L, et al. Monitoring and assessing carbon footprint of
individual trip chain in environment of mobility as a
service[J]. Journal of Transportation Systems Engineering
and Information Technology, 2023, 23(2): 22-31, 53.]
[3]LIANG Z, TANG Y, YU J, et al. A collective incentive
strategy to manage ridership rebound and consumer
surplus in mass transit systems[J]. Transportation
Research Part A: Policy and Practice, 2024, 182(4):
104031.
[4]李婉莹,关宏志,韩艳,等.社会偏好视野下旅游出行服务链定价博弈模型[J].交通运输系统工程与信息,
2022, 22(4): 11-22. [LI W Y, GUAN H Z, HAN Y, et al.
Pricing game model of travel service chain under social
preference view[J]. Journal of Transportation Systems
Engineering and Information Technology, 2022, 22(4):
11-22.]
[5]刘好德,钱贞国,刘向龙,等.城市MaaS研究热点文献计量分析与发展启示[J]. 交通运输研究,2022,8(3):
130-142. [LIU H D, QIAN Z G, LIU X L, et al.
Bibliometric research and development enlightenments
of urban MaaS hotspots[J]. Transport Research, 2022, 8
(3): 130-142.]
[6]TSOUROS I, TSIRIMPA A, PAGONI I, et al. MaaS users:
Who they are and how much they are willing-to-pay[J].
Transportation Research Part A: Policy and Practice,
2021, 148(6): 470-480.
[7]SCHIKOFSKY J, DANNEWALD T, KOWALD M.
Exploring motivational mechanisms behind the intention
to adopt mobility as a service (MaaS): Insights from
Germany [J]. Transportation Research Part A: Policy and
Practice, 2020, 131(1): 296-312.
[8]LI Y, MAY A, COOK S, et al. Literature review: Why do
we need innovative design methods for future
Mobility-as-a-Service
(MaaS)?[J].
Transportation
Research Interdisciplinary Perspectives, 2024, 27(9):
101233.
[9]
BRIAND A-S, CôME E, TRéPANIER M, et al. Analyzing
year-to-year changes in public transport passenger
behaviour using smart card data[J]. Transportation
Research Part C: Emerging Technologies, 2017, 79(6):
274-289.
[10] LI M. Using the propensity score method to estimate
causal effects: A review and practical guide[J].
Organizational Research Methods, 2013, 16(2): 188-226.
[11] NASRI A, CARRION C, ZHANG L, et al. Using
propensity score matching technique to address self
selection in transit-oriented development (TOD) areas[J].
Transportation, 2020, 47: 359-371.
[12] MARINESCU I E, LAWLOR P N, KORDING K P. Quasi
experimental causality in neuroscience and behavioral
research[J]. Nature Human Behaviour, 2018, 2(12): 891
898.
[13] ATHEY S, IMBENS G. Recursive partitioning for
heterogeneous causal effects[J]. Proceedings of the
National Academy of Science of the United States of
America, 2016, 113(27): 7353-7360.
[14] KüNZEL S R, SEKHON J S, BICKEL P J, et al.
Metalearners for estimating heterogeneous treatment
effects using machine learning[J]. Proceedings of the
National Academy of Science of the United States of
America, 2019, 116 (10): 4156-4165.
[15] 龚鹤扬.基于信息视角的因果建模及其在互联网个性化激励增益建模中的应用[D].合肥:中国科学技术大学, 2021. [GONG H Y, An informative view of causality
and its applications in industrial personalize incentives
with Uplift modeling[D]. Hefei: University of Science and
Technology of China, 2021.
|