交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (4): 34-43.DOI: 10.16097/j.cnki.1009-6744.2025.04.004

• 综合交通运输体系论坛 • 上一篇    下一篇

出行即服务促销策略对用户生命周期提升的因果推断研究

俞诚成1 ,戴一楚2 ,杨超*1,3 ,徐雷4 ,袁泉1,3   

  1. 1. 同济大学,城市交通研究院,上海200092;2.南京信息工程大学,数学与统计学院,南京210044;3.同济大学, 道路与交通工程教育部重点实验室,上海201804;4.浙江省数智交院科技股份有限公司,物流中心,杭州310030
  • 收稿日期:2025-02-26 修回日期:2025-03-20 接受日期:2025-03-24 出版日期:2025-08-25 发布日期:2025-08-25
  • 作者简介:俞诚成(1999— ),男,浙江杭州人,博士生。
  • 基金资助:
    国家自然科学基金 (52172305)。

Casual Inference Research of Mobility-as-a-service Incentive Strategies on User Life-cycle Survival Time Promotion

YU Chengcheng1, DAI Yichu2, YANG Chao*1,3, XU Lei4 , YUAN Quan1,3   

  1. 1. Urban Mobility Institute, Tongji University, Shanghai 200092, China; 2. School of Mathematics and Statistics, Nanjing University of Information Engineering, Nanjing 210044, China; 3. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China; 4. Logistic Center, Zhejiang Institute of Communications Co Ltd, Hangzhou 310030, China
  • Received:2025-02-26 Revised:2025-03-20 Accepted:2025-03-24 Online:2025-08-25 Published:2025-08-25
  • Supported by:
    National Natural Science Foundation of China (52172305)。

摘要: 针对出行即服务平台短期促销激励策略的有效性评估与精准实施问题,本文提出“准社会实验-因果推断”融合框架,旨在量化短期促销激励策略对出行即服务用户生命周期的平均与异质性处理效应,并实现策略敏感人群的个体级识别。首先,采用准社会实验与倾向得分匹配方法消除在出行频率、消费金额、出行规律性和高峰时段出行占比这4类出行特征上的自选性偏差,在激励策略整体层级估算平均处理效应;然后,引入二元因果森林模型分析用户群组层级行为特征的异质性,计算异质性处理效应与个体处理效应分布;最后,基于个体的增益模型构建自然生存时长与增益值的四象限模型,实现在个体级别的敏感人群动态划分与优先级排序。实证研究结果表明:激励金额与平均处理效应呈正相关,但边际效应递减,尤其是高额激励(>10元),尽管平均处理效应为12.18d,但低额激励([1,10]元)在成本效益上更具优势(平均处理效应为11.10d,成本降低82.5%);用户出行频率与消费金额是驱动异质性处理效应的核心因素,高频率和高消费用户响应较为显著;个体级增益模型有效识别营销敏感人群,其中,60.19%为低出行频率用户,但高消费用户中仍存在12.84%的敏感个体,验证了传统“高价值优先”策略的偏差,并辨识出低出行频率和低消费用户中分别有23.61%与17.37%的反作用人群,需避免干预。

关键词: 城市交通, 用户挽留, 因果推断, 出行即服务, 激励策略, 全生命周期

Abstract: This study addresses the issue of effectiveness evaluation and precise implementation about short-term promotional incentive strategies for Mobility-as-a-Service (MaaS) platforms. This study proposes a "quasi-social experiment-causal inference" integrated framework to quantify the average and heterogeneous treatment effects of short-term promotional incentives on MaaS users' lifecycle, and to achieve individual-level identification of strategy-sensitive user segments. First, a quasi-social experiment combining with propensity score matching is used to eliminate the selection bias across four types of travel characteristics: travel frequency, spending amount, travel regularity, and the proportion of peak-hour travel, and to estimate the average treatment effect at the overall strategy level. Then, a binary causal forest model is introduced to analyze the heterogeneity of user group-level behavioral characteristics, and to calculate the distributions of heterogeneous treatment effects and individual treatment effects. Finally, based on the individual uplift model (Uplift model, UM), a four-quadrant model of natural survival time and uplift values is constructed to achieve dynamic classification and prioritization of sensitive user segments at the individual level. The empirical results show that: (1) The incentive amount is positively correlated with average treatment effects, but with diminishing marginal effects. Although high-value incentives (>10 yuan) yield an average treatment effects of 12.18 days, low-value incentives (1~10 yuan) are more cost-effective (average treatment effects 11.10 days, with a cost reduction of 82.5%). (2) User travel frequency and spending amount are the core e of heterogeneous treatment effects , with higher-frequency and higher-spending users showing more significant responses. (3) The individual-level uplift model effectively identifies marketing-sensitive user segments, with 60.19% of them being low-frequency users. However, among high-spending users, 12.84% are still sensitive, which verifies the bias of the traditional "high-value first" strategy and identifies that 23.61% and 17.37% of low-frequency and low-spending users, respectively, belong to the counterproductive group, requiring avoidance of intervention.

Key words: urban traffic, user retention, casual inference, mobility-as-a-service, incentive strategy, lifecycle survival time

中图分类号: