交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (3): 44-60.DOI: 10.16097/j.cnki.1009-6744.2025.03.005

• 多式联运与综合运输 • 上一篇    下一篇

复杂网络结构与环境下多式联运网络路径优化与流量分配

胡自强,魏玉光*,安然,李晨,李琦   

  1. 北京交通大学,交通运输学院,北京100044
  • 收稿日期:2024-12-25 修回日期:2025-02-17 接受日期:2025-02-24 出版日期:2025-06-25 发布日期:2025-06-19
  • 作者简介:胡自强(1997—),男,陕西西安人,博士生。
  • 基金资助:
    中央高校基本科研业务费专项资金(2022JBQY006)。

Optimization of Routing and Traffic Allocation in Multimodal Transportation Network with Complex Network Structure and Environment

HU Ziqiang, WEI Yuguang*,AN Ran, LI Chen, LI Qi   

  1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
  • Received:2024-12-25 Revised:2025-02-17 Accepted:2025-02-24 Online:2025-06-25 Published:2025-06-19
  • Supported by:
    Fundamental Research Funds for the Central Universities (2022JBQY006)。

摘要: 针对复杂网络结构与环境下的多式联运网络路径优化与流量分配问题,本文通过设立开放度系数指标,体现运输市场壁垒对实际运输网络结构与运输环境的影响。这一系数反映物理网络中运输线路对不同种类货物多式联运经营人的通达性。综合考虑网络环境、流量平衡、运输与转运作业及路径通过能力等因素,构建混合整数规划模型用于路径优化与流量分配。以我国区域级多式联运路网为例,利用GUROBI优化求解器求解模型,验证模型的有效性。研究结果表明:在多式联运网络开放程度分别为低与高的情况下,运输总费用比不开放的原网络降低了3.03%和5.05%,相应的货运专线运输收益有所提升;同时,随着路径能力的提升,原先能力饱和的低成本路径上的货运量进一步增加,不同路径通过能力下的货物运输量与路径利用率为多式联运网络的改扩建提供了多样的优化方案。

关键词: 综合运输, 路径优化与流量分配, 混合整数规划, 多式联运, 复杂网络结构

Abstract: This paper addresses the route optimization and traffic allocation in multimodal transportation networks with complex structures and environments. An openness coefficient is established to reflect the impact of transportation market barriers on the actual structure of transportation networks and the transportation environment. This coefficient specifically reflects the accessibility of freight lines for different types of multimodal transport operators within the physical network. To optimize the paths and flow in multimodal transport networks, we comprehensively consider factors such as network structure and environment, flow balance, mode selection and conversion, as well as path capacity, and consequently develop a mixed-integer programming model. Taking a regional multimodal transportation network of China as an example, the model is solved using the GUROBI optimization solver to verify its effectiveness. The research findings indicate that when the openness level of the multimodal transportation network is either low or high, the total transportation costs decrease by 3.03% and 5.05%, respectively, compared to the original network, and the corresponding revenues from dedicated lines have increased. Additionally, with the enhancement of path capacity, the freight volume of low-cost paths that are capacity-saturated increases. The transportation volumes and path utilization rates under different path capacities provide various optimization solutions for the expansion and reconstruction of multimodal transportation networks.

Key words: integrated transportation, route optimization and traffic allocation, mixed-integer programming, multimodal transportation, complex network structure

中图分类号: