交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (4): 306-316.DOI: 10.16097/j.cnki.1009-6744.2025.04.028

• 系统工程理论与方法 • 上一篇    下一篇

面向特征增强的危险品运单深度分析方法

陈邦举1,2,3 ,罗义凯4 ,陈磊磊4 ,伍翰廷4 ,项昌乐*1   

  1. 1. 北京理工大学,机械与车辆学院,北京100081;2.中交信捷科技有限公司,北京100011; 3. 中国交通通信信息中心,北京100011;4.长安大学,运输工程学院,西安710064
  • 收稿日期:2025-04-07 修回日期:2025-05-09 接受日期:2025-05-15 出版日期:2025-08-25 发布日期:2025-08-25
  • 作者简介:陈邦举(1994—),男,安徽庐江人,博士生。
  • 基金资助:
    国家自然科学基金 (72371035);陕西省自然科学基础研究计划项目 (2020JM-237)。

A Deep Learning Approach for Enhancement of Hazardous Goods Waybill's Feature

CHEN Bangju1,2,3, LUO Yikai4, CHEN Leilei4, WU Hanting4, XIANG Changle*1   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. China Transport InfoJet Technologies Co Ltd, Beijing 100011, China; 3. China Transport Telecommunications & Information Center, Beijing 100011, China; 4. School of Transportation Engineering, Chang'an University, Xi'an 710064, China
  • Received:2025-04-07 Revised:2025-05-09 Accepted:2025-05-15 Online:2025-08-25 Published:2025-08-25
  • Supported by:
    National Natural Science Foundation of China (72371035);Natural Science Basic Research Plan in Shaanxi Province (2020JM-237)。

摘要: 我国危险货物运输的运单常由运输企业在运输前填写报备,其起讫点位置及时间不精确,在运输管理方面发挥作用有限。为提升危险品运单质量,本文提出一种应用危险品运输车辆轨迹数据的深度学习方法。针对车辆实时定位数据常有缺失,难以精准定位的问题,构建考虑多头自注意力机制的轨迹插补模型,以补全缺失轨迹;结合危险品运输特征,设计融合自适应机制和阈值规则的双层聚类算法识别车辆起讫点时间和经纬度信息;运单的精确起讫点名称可根据文本识别模型从聚类中心点周边兴趣点中筛选识别,从而实现对运单的增强。应用广东省液化天然气运输车数据测试所提出方法,结果表明:轨迹插补模型在不同缺失率下的平均绝对误差和平均绝对百分比误差值分别为2.34~3.33和6.05~7.74,均小于对比模型;危险品货运起讫点时间和位置识别的准确率为98.35%;文本识别模型对具体兴趣点的识别准确率达92.83%。本文构建方法可实现对预填运单关键字段的高精度反演与校正,从而对危险品运输安全管理提供重要的理论依据和实践指导。

关键词: 公路运输, 危险品运单增强, 起讫点识别, 轨迹插补, 双层聚类算法, 文本识别

Abstract: The waybills for the transportation of hazardous goods are usually filled in and reported by transport agencies before shipment in China. Therefore, the related time stamps of origin and destination are often inaccurate, which limit the effectiveness in transport management. A deep learning approach using the trajectory data of hazardous goods transportation vehicles is proposed to improve the quality of waybills. A trajectory imputation model incorporating a multi-head self-attention mechanism is firstly constructed to complete missing trajectories, which can solve the positioning accuracy problems caused by the missing real time vehicle positioning data. Then, based on the characteristics of hazardous goods transportation, a dual-layer clustering algorithm integrating an adaptive mechanism and multiple threshold rules is designed to identify the times and geographic coordinates of origin and destination for a specific waybill. The waybill can be enhanced by extracting precise origin and destination addresses from points of interest around the cluster centers using a text recognition model. The proposed methods were tested using the data of LNG transport vehicles in Guangdong, China. The results indicate that the Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) of the trajectory imputation model ranged from 2.34~3.33 and 6.05~7.74 under various data missing rates respectively, which outperform other baseline models. The accuracy of identifying the times and geographic coordinates of origin and destination reaches 98.35%. The text recognition model achieves an accuracy of 92.83% in identifying the address information of selected point of interests(POI). The proposed method enables high-precision inversion and correction of key fields in pre-filled waybills, thereby providing important theoretical support and practical guidance for the safety management of hazardous materials transportation.

Key words: highway transportation, enhancement of hazardous goods waybill, identification of origin and destination, trajectory imputation, dual-layer clustering algorithm, text recognition

中图分类号: