交通运输系统工程与信息 ›› 2009, Vol. 9 ›› Issue (6): 148-153 .

• 系统工程理论与方法 • 上一篇    下一篇

基于Kalman滤波的行人跟踪方法研究

李娟;邵春福*;杨励雅;李琦   

  1. 北京交通大学 城市交通复杂系统理论与技术教育部重点实验室,北京 100044
  • 收稿日期:2009-01-22 修回日期:2009-03-24 出版日期:2009-12-25 发布日期:2009-12-25
  • 通讯作者: 邵春福
  • 作者简介:李娟(1980-),女,山东德州人,博士生.
  • 基金资助:

    国家重点基础研究发展计划(973计划)(2006CB705500);国家自然科学基金(50778015);中国人民大学科学研究基金(07XND012).

LI Juan; SHAO Chun-fu; YANG Li-ya; LI Qi   

  1. MOE Key Laboratory for Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China
  • Received:2009-01-22 Revised:2009-03-24 Online:2009-12-25 Published:2009-12-25
  • Contact: SHAO Chun-fu

摘要: 应用视频处理技术对行人交通进行研究和分析受到广泛的重视和发展,已成为智能交通领域的研究热点之一,而行人跟踪是行人交通采集系统的基础,是后续交通参数提取,行为分析的前提.本文提出一种基于Kalman滤波的行人跟踪方法.首先,利用改进的混合高斯模型提取背景,并采用HSV颜色空间模型和目标重构方法得到消除阴影后的前景图像.其次,进行行人的特征提取,得到融合行人位置特征和形状特征的运动模板.最后,采用Kalman滤波对行人的运动轨迹进行预测,将检测到的目标与预测结果匹配,得到行人的跟踪匹配矩阵,根据匹配矩阵判断合并和分离的发生.试验结果表明,该方法不仅可以准确跟踪多目标,而且可以有效解决遮挡问题,具有很好的适应性和鲁棒性.

关键词: 智能交通系统, 行人跟踪, 混合高斯模型, Kalman滤波

Abstract: Pedestrian tracking is an important part of Intelligent Transportation Systems (ITS) application. A new robust system for pedestrian tracking based on computer vision is proposed in this paper. First, improved Gaussian mixture model is used to detect pedestrian. To get better segmentation result, morphological reconstruction is utilized to remove shadows. Then, pedestrian tracking is achieved by feature fusion and prediction methodology. The trajectories are incorporated by the Kalman filter to determine the search windows, which are used to establish the matching matrix at two successive frames by comparing with detected pedestrians. Finally, an object association strategy is incorporated to deal with object tracking in case of merging and splitting by the template integrated spatial position and shape information. The tracking method is tested under real scenarios. Elaborate experiment results show good robustness and high efficiency of this method.

Key words: intelligent transportation systems (ITS), pedestrian tracking, Gaussian mixture model, Kalman filter

中图分类号: