交通运输系统工程与信息 ›› 2015, Vol. 15 ›› Issue (5): 216-222.

• 系统工程理论与方法 • 上一篇    下一篇

出行分布观测数据中的稀疏矩阵问题研究

罗小强*   

  1. 长安大学建筑学院,西安710064
  • 收稿日期:2015-05-21 修回日期:2015-07-25 出版日期:2015-10-25 发布日期:2015-10-28
  • 作者简介:罗小强(1979-),男,陕西南郑人,讲师,博士.
  • 基金资助:

    中央高校基金(2013G1411077);陕西省社科基金(2014D39)

The Sparse Matrix Problem in Trip Distribution Observational Data

LUO Xiao-qiang   

  1. School of Architecture, Chang' an University, Xi'an 710061, China
  • Received:2015-05-21 Revised:2015-07-25 Online:2015-10-25 Published:2015-10-28

摘要:

对出行分布观测数据中的稀疏矩阵问题进行分析,提出了部分矩阵估计、补零矩阵估计和增量矩阵估计3 种不同方法来标定双约束重力模型的参数.通过定义估计的精确性和有效性两个不同的估计效果测度,将双约束重力模型等价为带有约束的数学规划,并采用解析方法比较3 种不同标定方法的估计精度差异.在此基础上,通过数值方法模拟计算,并比较3 种标定方法的估计有效性.通过研究可以发现,补零矩阵估计的参数精确性最好,而增量矩阵估计的有效性最好.研究成果能够作为实际城市交通规划中观测稀疏矩阵参数标定工作的理论依据.

关键词: 城市交通, 稀疏矩阵, 参数标定, 重力模型, 误差估计

Abstract:

The problem of sparse matrix in the trip distribution observational data are analyzed, and three different methods are put forward to calibrate the parameters of the double restraint gravitational model, as Parted Matrix Estimation, Zero Replaced Matrix Estimation and Incremental Matrix Estimation. By defining the Estimate Accuracy Index and the Estimate Effectiveness Index to measure the effects of estimation, this paper through the double restraint gravitational model equivalent mathematical programming with constraints, and compares three different analytical method of the estimation precision of the calibration method. On the basis of analysis, it used the methods of numerical simulation calculation, and contrasted the three estimation methods in accuracy and effectiveness. The conclusion finds that the calibration parameters by the method of the Zero Replaced Matrix Estimation have the best results in accuracy, and the calibration parameters by the method of the Incremental Matrix Estimation have the best results in effectiveness. The research results can be used as a theoretical basis of parameters calibration of observation sparse matrix in urban traffic planning in practical.

Key words: urban traffic, sparse matrix, parameter calibration, gravity model, error estimation

中图分类号: