交通运输系统工程与信息 ›› 2015, Vol. 15 ›› Issue (6): 74-81.

• 智能交通系统与信息技术 • 上一篇    下一篇

复杂环境基于多信息融合的车辆跟踪方法

刘阳,王忠立*,蔡伯根   

  1. 北京交通大学电子信息工程学院,北京100044
  • 收稿日期:2015-03-05 修回日期:2015-08-29 出版日期:2015-12-25 发布日期:2015-12-25
  • 作者简介:刘阳(1987-),男,河北辛集人,博士生.
  • 基金资助:

    中央高校基本科研业务费项目(2014YJS011);国家自然科学基金面上项目(61573057)

Multiple Information Fusion-based Vehicle Tracking in Complex Environment

LIU Yang,WANG Zhong-Li, CAI Bai-Gen   

  1. School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2015-03-05 Revised:2015-08-29 Online:2015-12-25 Published:2015-12-25

摘要:

平交路口复杂环境下基于视觉的车辆跟踪容易受到如车辆在图像上投影的尺 度变化,车辆的排队与消散过程中邻近车辆间的遮挡及分离等因素的影响.针对该问题, 本文提出了一种利用局部特征增强的Mean-shift 改进算法,利用SIFT 特征点对尺度、旋 转变化鲁棒的特性,将其与基于跟踪区域颜色特征的跟踪方法相融合实现车辆跟踪,较 好地解决了在车辆尺度、运动方向变化,以及遮挡情况下的跟踪问题.同时通过引入跟踪 车辆分离的判定条件,结合特征点聚类算法解决了相邻车辆发生分离时的判断及跟踪问 题.实验结果表明,在多种交通场景的车辆跟踪过程中,本文提出的算法有较好的鲁棒性, 定位结果更加精确.

关键词: 交通工程, 车辆跟踪, 均值漂移, 尺度不变特征, 归一化割

Abstract:

The vehicle tracking at intersection environment is affected by vehicle scale change, occlusion, vehicle queue and dissipation. To solve the problem, a reinforcement algorithm is proposed by using the rotation robustness and scale-invariant characteristics of SIFT feature, combing with region color histogram to track vehicle in scale change and occlusion situation. This paper also establishes criteria for vehicle separation and integrates clustering algorithm to detect and track departing vehicle. The experiment result shows that compare with traditional algorithm, the proposed algorithm provide more robust and more accurate result in multiple traffic scenes.

Key words: traffic engineering, vehicle tracking, mean-shift, scale invariant feature transform, normalized cut

中图分类号: