[1] CHANG G, ZHANG Y, YAO D, et al. A Summary of short- term traffic flow forecasting methods[C]//ICCTP 2011: Towards Sustainable Transportation Systems- Proceedings of the 11th International Conference of Chinese Transportation Professionals, Nanjing, 2011: 1696-1707.
[2] GUO J, HUANG W, WILLIANS B. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification[J]. Transportation Research Part C: Emerging Technologies, 2014(43): 50-64.
[3] 聂佩林, 龚峻峰. 一种路网交通流参数的融合预测方法[J]. 交通运输系统工程与信息, 2015, 15(6): 39-45. [NIE P L, GONG J F. A combined traffic network flow prediction method[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(6): 39-45.]
[4] MA X L, TAO Z M, WANG Y H, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015(54): 187-197.
[5] 傅成红, 张阳. 基于参数优化的SVR城市群交通需求预测方法[J]. 系统工程, 2016, 34(2): 114-120. [FU C H, ZHANG Y. An improved SVR algorithm based on the nuclear parameter optimization for traffic demand forecasting[J]. Systems Engineering, 2016, 34(2): 114- 120.]
[6] 罗文慧, 董宝田, 王泽胜. 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17(5): 68-74. [LUO W H, DONG B T, WANG Z S. Short-term traffic flow prediction based on CNNSVR hybrid deep learning model[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 68-74.]
[7] 罗向龙, 焦琴琴, 牛力瑶, 等. 基于深度学习的短时交通流预测[J]. 计算机应用研究, 2017, 34(1): 91-93, 97. [LUO X L, JIAO Q Q, NIU L Y, et al. Short-term traffic flow prediction based on deep learning[J]. Application Research of Computers, 2017, 34(1): 91- 93, 97.]
[8] 姚智胜, 邵春福, 熊志华. 基于小波包和最小二乘支持向量机的短时交通流组合预测方法研究[J]. 中国管理科学, 2007(1): 64-68. [YAO Z S, SHAO C F, XIONG Z H. Research on short-term traffic flow combined forecasting based on wavelet package and least square support vector machines[J]. Chinese Journal of Management Science, 2007(1): 64-68.]
[9] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[10] 刘明宇, 吴建平, 王钰博, 等. 基于深度学习的交通流量预测[J]. 系统仿真学报, 2018, 30(11): 77-82, 91. [LIU M Y, WU J P, WANG Y B, et al. Traffic flow prediction based on deep learning[J]. Journal of System Simulation, 2018, 30(11): 77-82, 91.]
[11] ZHAO X R, GU Y L, CHEN L, et al. Urban short-term traffic flow prediction based on stacked autoencoder[C]// CICTP 2019: Transportation in China-Connecting the World- Proceedings of the 19th COTA International Conference of Transportation Professionals, Nanjing, 2019: 5178-5188.
[12] 王祥雪, 许伦辉. 基于深度学习的短时交通流预测研究[J]. 交通运输系统工程与信息, 2018, 18(1): 81-88. [WANG X X, XU L H. Short-term traffic flow prediction based on deep learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1): 81-88.]
[13] 成强. 基于小波包与长短时记忆融合的铁路旅客流量预测模型[J]. 计算机系统应用, 2018, 27(7): 121-126. [CHENG Q. Hybrid model based on wavelet packet and long short-term memory for railway passenger traffic volume prediction[J]. Computer Systems & Applications, 2018, 27(7): 121-126.]
[14] 高勇, 陈锋. 基于小波分析的短时交通流非参数回归预测[J]. 中国科学技术大学学报, 2008, 38(12): 1427- 1431. [GAO Y, CHEN F. Wavelet analysis-based NPR prediction of short-term traffic flow[J]. Journal of University of Science and Technology of China, 2008, 38 (12): 1427-1431.] |