[1] CANCA D, BARRENA E, ALGABA E, et al. Design and analysis of demand- adapted railway timetables[J]. Journal of Advanced Transportation, 2014, 48: 119-137.
[2] ZHU Y T, MAO B H, BAI Y, et al. A bi-level model for single- line rail timetable design with consideration of demand and capacity[J]. Transportation Research Part C, 2017, 85: 211-233.
[3] NIU H M, ZHOU X S, GAO R H. Train scheduling for minimizing passenger waiting time with time- dependent demand and skip- stop patterns: Nonlinear integer programming models with linear constraints[J]. Transportation Research Part B, 2015, 76: 117-135.
[4] 李正洋, 赵军, 彭其渊. 考虑多交路多编组的城市轨道线路列车交路计划优化[J]. 铁道学报, 2020, 42(6): 1- 11. [LI Z Y, ZHAO J, PENG Q Y. Optimizing the train service design in an urban rail transit line with multiple service routes and multiple train sizes[J]. Journal of the China Railway Society, 2020, 42(6): 1-11.]
[5] SANDER V, NIKOLA B, ROB M. Optimal design of a short- turning strategy considering seat availability [J]. Journal of Advanced Transportation, 2016, 50(7): 1554-1571.
[6] JI Y X, YANG X Y, DU Y C. Optimal design of a shortturning strategy considering seat availability[J]. Journal of Advanced Transportation, 2016, 50(7): 1554-1571.
[7] 许得杰, 曾俊伟, 麻存瑞, 等. 考虑满载率均衡性的大小交路列车开行方案优化研究[J]. 交通运输系统工程与信息, 2017, 17(6): 185-192. [XU D J, ZENG J W, MA C R, et al. Optimization for train plan of full-length and short- turn routing considering the equilibrium of load factor[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(6): 185-192.]
[8] WESTON J G. Train service model- technical guide[J]. London Underground Operational Research Note, 1989, 89: 18.
[9] MAHER M. Model building in mathematical programming[J]. Journal of the Operational Research Society, 1979, 30(2): 182-183. |