[1] 工业,信息化部. GB 17761-2018, 电动自行车安全技术规范[S]. 北京:中国标准出版社,2018. [Ministry of Industry and Information Technology. GB 17761- 2018, E- Bike safety technical specifications[S]. Beijing: Standards Press of China, 2018]
[2] 唐克双, 郝兆康, 衣谢博闻, 等. 停车场泊位占有率预测方法评价[J]. 同济大学学报(自然科学版), 2017, 45 (4): 533-543. [TANG K S, HAO Z K, YI X B W, et al. Evaluation of parking occupancy prediction methods in parking lots[J]. Tongji University Journal (Natural Sciences Edition), 2017, 45(4): 533-543.]
[3] 陈亮, 王金泓, 何涛, 等. 基于SVR 的区域交通碳排放预测研究[J]. 交通运输系统工程与信息, 2018, 18(2): 13-19. [CHEN L, WANG J X, HE T, et al. SVR-based regional traffic carbon emission prediction study[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (2): 13-19.]
[4] 赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程 学 报, 2020, 20(4): 194- 204. [ZHAO Y Y, XIA L, JIANG X G. Short-term subway passenger flow prediction model based on empirical modal decomposition and long-term memory neural networks[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204.]
[5] 龙勇, 苏振宇, 汪於. 基于季节调整和 BP 神经网络的月度负荷预测[J]. 系统工程理论与实践, 2018, 38(4): 1052-1060. [LONG Y, SU Z Y, WANG Y. Monthly load forecasting based on seasonal adjustments and BP neural networks[J]. Systems Engineering Theory and Practice, 2018, 38(4): 1052-1060.]
[6] XU D W, WANG Y D, JIA L M, et al. Real-time road traffic state prediction based on ARIMA and Kalman filter[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 287-303.
[7] MILENKOVIC M, SVADLENKA L, MELICHAR V, et al. SARIMA modelling approach for railway passenger flow forecasting[J]. Transport, 2018, 33(5): 1113-1120.
[8] 艾欣, 周志宇, 魏妍萍, 等. 基于自回归积分滑动平均模型的可转移负荷竞价策略[J]. 电力系统自动化, 2017, 41(20): 26-31, 104. [AI X, ZHOU Z Y, WEI Y P, et al. Bidding strategy for time-shiftable loads based on autoregressive integrated moving average model[J]. Power System Automation, 2017, 41 (20): 26-31, 104.]
[9] SAHAI A K, RATH N, SOOD V, et al. ARIMA modelling & forecasting of COVID-19 in top five affected countries [J]. Diabetes and Metabolic Syndrome Clinical Research and Reviews, 2020, 14(5): 1419-1427.
[10] 白丽. 城市轨道交通常态与非常态短期客流预测方法研究[J]. 交通运输系统工程与信息, 2017, 17(1): 127- 135. [BAI L. Study on the normal and unusual short-term passenger flow forecasting methods of urban rail transit [J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17 (1): 127-135.]
[11] XIE P, LI T R, LIU J, et al. Urban flow prediction from spatiotemporal data using machine learning: A survey[J]. Information Fusion, 2020, 59: 1-12. |