[1] 毛嘉莉, 金澈清, 章志刚, 等. 轨迹大数据异常检测: 研究进展及系统框架[J]. 软件学报, 2017, 28(1): 17-34. [MAO J L, JIN C Q, ZHANG Z G, et al. Anomaly detection for trajectory big data: Advancements and framework[J]. Journal of Software, 2017, 28(1): 17-34.]
[2] CHAWLA S, ZHENG Y, HU J. Inferring the root cause in road traffic anomalies[C]. IEEE International Conference on Data Mining, Brussels, 2013: 141-150.
[3] 吴玥琳, 袁振洲, 陈秋芳, 等. 考虑轨迹相似度的综合客运枢纽出租车合乘方法研究[J]. 交通运输系统工程与信息, 2020, 20(2): 188-195. [WU Y L, YUAN Z Z, CHEN Q F, et al. Taxi pooling method of urban integrated passenger transport hub with trajectory similarity[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 188-195.]
[4] LEI P R. A framework for anomaly detection in maritime trajectory behavior[J]. Knowledge & Information Systems, 2016, 47(1): 189-214.
[5] SPAGNOL C, MURADORE R, ASSOM M, et al. Trajectory reconstruction by integration of GPS and a swarm of MEMS accelerometers: Model and analysis of observability[C]. International IEEE Conference on Intelligent Transportation Systems, Washington, 2005: 64-69.
[6] ZHANG L, MENG Q, XIAO Z, et al. A novel ship trajectory reconstruction approach using AIS data[J]. Ocean Engineering, 2018, 159: 165-174.
[7] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Advances in Neural Information Processing Systems, Curran Associates, 2014: 2672-2680.
[8] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[9] 段宗涛, 张凯, 杨云, 等. 基于深度 CNN-LSTM-ResNet 组合模型的出租车需求预测[J]. 交通运输系统工程与信 息, 2018, 18(4): 215- 223. [DUAN Z T, ZHANG K, YANG Y, et al. Taxi demand prediction based on CNNLSTM-ResNet hybrid depth learning model[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(4): 215-223.]
[10] YANG Z, YANG D, DYER C, et al. Hierarchical attention networks for document classification[C]. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, California, 2016: 1480-1489. |