[1] GAWADE M, ZHANG Y. Synthesis of remote air traffic
control system and air traffic controllers' perceptions[J].
Transportation Research Record, 2016, 2600(1): 49-60.
[2] ANDRAŠI P, RADIŠIĆ T, NOVAK D, et al. Subjective
air traffic complexity estimation using artificial neural
networks[J]. Promet- Traffic & Transportation, 2019, 31
(4): 377-386.
[3] GIANAZZA D. Forecasting workload and airspace
configuration with neural networks and tree search
methods[J]. Artificial Intelligence, 2010, 174(7/8): 530-
549.
[4] LAUDEMAN I V, SHELDEN S G, BRANSTROM R,
et al. Dynamic density: An air traffic management metric
[R]. NASA/TM-1998-112226, Moffett Field, CA: NASA
1998.
[5] GIANAZZA D, GUITTET K. Selection and evaluation of
air traffic complexity metrics[C]. 25TH Digital Avionics
Systems Conference, Portland, Oregon: IEEE, 2006: 1-
12.
[6] 张进, 胡明华, 张晨. 空中交通管理中的复杂性研究
[J]. 航 空 学 报, 2009, 30(11): 2132- 2142. [ZHANG J,
HU M H, ZHANG C. Complexity research in air traffic
management[J]. Acta Aeronauticaet Astronautica Sinica,
2009, 30(11): 2132-2142.]
[7] ZHU X, CAI K, CAO X. A semi-supervised learning
method for air traffic complexity evaluation[C]//2017
Integrated Communications, Navigation and Surveillance
Conference (ICNS), Herndon, VA, USA: IEEE, 2017: 1A3-1-1A3-11.
[8] ZHU X, CAO X, CAI K. Measuring air traffic complexity
based on small samples[J]. Chinese Journal of
Aeronautics, 2017, 30(4): 1493-1505.
[9] CAO X, ZHU X, TIAN Z, et al. A knowledge-transferbased learning framework for airspace operation
complexity evaluation[J]. Transportation Research Part
C: Emerging Technologies, 2018, 95: 61-81.
[10] GOODFELLOW I, POUGET-ABADIE J, MIRZA M,
et al. Generative adversarial nets[C]. Advances in Neural
Information Processing Systems, Montreal, Quebec,
Canada: MIT Press, 2014: 2672-2680.
[11] DOUZAS G, BACAO F. Effective data generation for
imbalanced learning using conditional generative
adversarial networks[J]. Expert Systems with
Applications, 2018, 91: 464-471.
[12] DU J, CHEN H, ZHANG W. A deep learning method for
data recovery in sensor networks using effective spatiotemporal correlation data[J]. Sensor Review, 2019, 39(2):
208-217 .
[13] LEVINA E, BICKEL P J. Maximum likelihood estimation
of intrinsic dimension[C]. Advances in Neural
Information Processing Systems, Vancouver, British
Columbia, Canada: MIT Press, 2005: 777-784.
|