[1] KHATIB O. Real-time obstacle avoidance system for
manipulators and mobile robots[J]. The International
Journal of Robotics Research, 1986, 5(1): 90-98.
[2] SATTEL T, BRANDT T. From robotics to automotive:
Lane-keeping and collision avoidance based on elastic
bands[J]. Vehicle System Dynamics, 2008, 46(7): 597-
619.
[3] NI D. A unified perspective on traffic flow theory, Part I:
The field theory[J]. Applied Mathematical Sciences,
2013, 7: 1929-1946.
[4] HSU T P, WENG G Y, LIN Y J. Conceptual structure of a
novel car-following model upon gravitational field concept
[C]. Vienna: 19th ITS World Congress, 2012.
[5] WOLF M T, BURDICK J W. Artificial potential functions
for highway driving with collision avoidance[C].
Pasadena: IEEE International Conference on Robotics &
Automation, 2008.
[6] 曲大义, 李娟, 刘聪, 等. 基于分子动力学的车流运行动态特性及其模型[J]. 交通运输系统工程与信息,
2017, 17(4): 188-194. [QU D Y, LI J, LIU C, et al.
Dynamic characteristics model of traffic flow based on
molecular dynamics[J]. Journal of Transportation
Systems Engineering and Information Technology, 2017,
17(4): 188-194.]
[7] LI C, JIANG X, WANG W, et al. A simplified carfollowing model based on the artificial potential field[J].
Procedia Engineering, 2016, 137: 13-20.
[8] YANG Z S, YU Y, YU D X, et al. APF- based car
following behavior considering lateral distance[J].
Advances in Mechanical Engineering, 2013, 2013(2013):
1255-1260.
[9] TREIBER M, HENNECKE A, HELBING D. Congested
traffic states in empirical observations and microscopic
simulations[J]. Physical Review E, 2000, 62: 1805-1824.
[10] 华雪东, 王炜, 王昊. 考虑车与车互联通讯技术的交通流跟驰模型[J]. 物理学报, 2016, 65(1): 13-25. [HUA X
D, WANG W, WANG H. A car-following model with
the consideration of vehicle-to-vehicle communication
technology[J]. Acta Physica Sinica, 2016, 65(1): 13-25.]
[11] 吴兵, 王文璇, 李林波, 等. 多前车影响的智能网联车辆纵向控制模型[J]. 交通运输工程学报, 2020, 20
(2): 184-194. [WU B, WANG W X, LI L B, et al.
Longitudinal control model for connected autonomous
vehicles influenced by multiple preceding vehicles[J].
Journal of Traffic and Transportation Engineering, 2020,
20(2): 184-194.]
[12] 秦严严, 王昊, 王炜, 等. 自适应巡航控制车辆跟驰模型综述[J]. 交通运输工程学报, 2017, 17(3): 121-130.
[QIN Y Y, WANG H, WANG W, et al. Review of carfollowing models of adaptive cruise control[J]. Journal of
Traffic and Transportation Engineering, 2017, 17(3):
121-130.]
[13] GUNAY B. Methods to quantify the discipline of lanebased-driving[J]. Traffic Engineering & Control, 2003, 44
(1): 22-27.
[14] LI L, GAN J, JI X, et al. Dynamic driving risk potential
field model under the connected and automated vehicles
environment and its application in car-following modeling
[J]. IEEE Transactions on Intelligent Transportation
Systems, 2020, 99: 1-20.
[15] 李林恒, 甘婧, 曲栩, 等. 智能网联环境下基于安全势场理论的车辆跟驰模型[J]. 中国公路学报, 2019, 32
(12): 76-87. [LI L H, GAN J, QU X, et al. Car-following
model based on safety potential field theory under
connected and automated vehicle environment[J]. China
Journal of Highway Transport, 2019, 32(12): 76-87.]
[16] JIA Y, QU D, HAN L, et al. Research on car-following
model based on molecular dynamics[J]. Advances
in Mechanical Engineering, 2021, 13(2):
168781402199300.
[17] YANAKIEV D, KANELLAKOPOULOS I. Nonlinear
spacing policies for automated heavy-duty vehicles[J].
IEEE Transactions on Vehicular Technology, 1998, 47
(4): 1365-1377.
[18] FERGUSON D M, KOLLMAN P A. Can the LennardJones 6-12 function replace the 10-12 form in molecular
mechanics calculations?[J]. Journal of Computational
Chemistry, 1991, 12(5): 620-626.
[19] LENNARD-JONES J E. Cohesion[J]. Proceedings of the
Physical Society, 1931, 43(5): 461-482.
[20] 王雪松, 朱美新, 邢祎伦. 基于自然驾驶数据的避撞预警对跟车行为影响[J]. 同济大学学报(自然科学版),
2016, 44(7): 1045-1051. [WANG X S, ZHU M X, XING
Y L. Impacts of collision warning system on car-following
behavior based on naturalistic driving data[J]. Journal of
Tongji University (Natural Science), 2016, 44(7): 1045-
1051.]
|