交通运输系统工程与信息 ›› 2023, Vol. 23 ›› Issue (3): 290-299.DOI: 10.16097/j.cnki.1009-6744.2023.03.030

• 系统工程理论与方法 • 上一篇    下一篇

复杂山区工程建设物资运输无人机巡航模型构建与实证研究

康柳江a,李浩a,孙会君*a,吴建军b   

  1. 北京交通大学,a.交通运输学院;b.轨道交通控制与安全国家重点实验室,北京100044
  • 收稿日期:2023-02-08 修回日期:2023-03-14 接受日期:2023-03-16 出版日期:2023-06-25 发布日期:2023-06-23
  • 作者简介:康柳江(1989-),男,浙江金华人,教授,博士
  • 基金资助:
    中央高校基本科研业务费专项资金(2022JBMC044);国家自然科学基金 (72288101,72001017)。

UAV Cruising for Material Transportation Under Engineering Construction in Complex Mountainous Areas: Modeling and Case Study

KANG Liu-jianga, LI Haoa, SUN Hui-jun*a, WU Jian-junb   

  1. a. School of Traffic and Transportation; b. State Key Lab of Rail Traffic Control & Safety, Beijing Jiaotong University, Beijing 100044, China
  • Received:2023-02-08 Revised:2023-03-14 Accepted:2023-03-16 Online:2023-06-25 Published:2023-06-23
  • Supported by:
    The Fundamental Research Funds for the Central Universities(2022JBMC044); National Natural Science Foundation of China(72288101,72001017)。

摘要: 基于某复杂山区YA-LZ段的铁路工程建设物资运输计划,本文研究无人机巡航规划及机队管理问题。首先,考虑无人机飞行高度限制和山区飞行轨迹,提出近似飞行距离算法计算山区无人机实际飞行距离。其次,通过建立以无人机基地建设成本、无人机固定成本与巡航成本最小化为目标的复杂艰险山区无人机巡航优化模型,决策无人机基地坐标、巡航范围以及机队配置需求。针对模型的非线性特点,设计自适应聚类一空间移动算法,通过有限次迭代快速划分巡航范围,进而搜索全局最优的无人机基地坐标,并计算最小机队配置需求。最后,将无人机巡航模型与自适应聚类一空间移动算法应用于YA-L乙段物资运输路线案例。通过与传统算法比较发现,计算结果可降低约20%的巡航成本。

关键词: 交通工程, 无人机巡航, 数学建模, 物资运输网络, 自适应聚类一空间移动算法

Abstract: This paper focuses on the unmanned aerial vehicle (UAV) cruising and fleet management problems based on the material transportation plan for the YA-LZ railway construction section. An approximate algorithm is proposed to calculate the actual cruising distance of UAV in mountainous areas, considering altitude limits and flight trajectories. Then, a nonlinear UAV cruising model is developed to minimize the base building cost, UAV fixed cost and cruising cost, which determines the UAV base coordinates, cruising coverage and fleet sizes. Moreover, an Adaptive Clustering- Spatial Movement (AC-SM) algorithm is designed to divide the cruising coverage through finite iterations and find the optimal UAV base coordinate as well as the minimum UAV fleet size. This paper applied the model and algorithm to the case study of the YA-LZ section. The results indicate that the proposed approaches reduce approximately 20% of the UAV cruising cost compared with the traditional algorithm.

Key words: traffic engineering, UAV cruising model, mathematical modeling, material transportation network, AC-SM algorithm

中图分类号: