[1] KHATIB O. Real-time obstacle avoidance system for
manipulators and mobile robots[J]. The International
Journal of Robotics Research, 1986, 5(1): 90-98.
[2] GULDNER J, UTKIN V I. Sliding mode control for
gradient tracking and robot navigation using artificial
potential fields[J]. IEEE Transactions on Robotics and
Automation, 1995, 11(2): 247-254.
[3] PETAR S, ALAN R. Degrees of homogeneity of potential
fields and structural indices of Euler deconvolution[J].
Geophysics, 2007, 72(1): 1-12.
[4] GE J I, GÁBOR OROSZ. Dynamics of connected vehicle
systems with delayed acceleration feedback-science
direct[J]. Transportation Research Part C: Emerging
Technologies, 2014, 46(9): 46-64.
[5] TREIBER M, HENNECKE A, HELBING D. Congested
traffic states in empirical observations and microscopic
simulations[J]. Physical Review E, 2000, 62(2): 1805-
1824.
[6] 杨龙海, 王晖, 李帅, 等. 改进分子动力学的车辆跟驰模型[J]. 重庆大学学报, 2021, 44(7): 26-33. [YANG L
H, WANG H, LI S, et al. Improved molecular dynamics
car-following model[J]. Journal of Chongqing University,
2021, 44(7): 26-33.]
[7] TIAN J, ZHANG H M, TREIBER M, et al. On the role of
speed adaptation and spacing indifference in traffic
instability: Evidence from car-following experiments and
its stochastic model[J]. Transportation Research Part B:
Methodological, 2019, 129: 334-350.
[8] LEE S, NGODUY D, KEYVAN-EKBATANI M.
Integrated deep learning and stochastic car-following
model for traffic dynamics on multi-lane freeways[J].
Transportation Research Part C: Emerging Technologies,
2019, 106: 360-377.
[9] MAKRIDIS M, LECLERCQ L, CIUFFO B, et al.
Formalizing the heterogeneity of the vehicle-driver
system to reproduce traffic oscillations[J]. Transportation
Research Part C: Emerging Technologies, 2020, 120:
102803.
[10] 秦严严, 王昊, 冉斌. CACC 车辆跟驰建模及混合交通流分析[J]. 交通运输系统工程与信息, 2018, 18(2): 60-
65. [QIN Y Y, WANG H, RAN B. Car-following
modeling for CACC vehicles and mixed traffic flow
analysis[J]. Journal of Transportation Systems
Engineering and Information Technology, 2018, 18(2):
60-65.]
[11] 曲大义, 李娟, 刘聪, 等. 基于分子动力学的车流运行动态特性及其模型[J]. 交通运输系统工程与信息,
2017, 17(4): 188-194. [QU D Y, LI J, LIU C, et al.
Dynamic characteristics and model of vehicle flow based
on molecular dynamics[J]. Journal of Transportation
Systems Engineering and Information Technology, 2017,
17(4): 188-194.]
[12] 李林恒, 甘婧, 曲栩, 等. 智能网联环境下基于安全势场理论的车辆跟驰模型[J]. 中国公路学报, 2019, 32
(12): 76-87. [LI L H, GAN J, QU X, et al. Car-following
model based on safety potential field theory under
connected and automated vehicle environment[J]. China
Journal of Highway and Transport, 2019, 32(12): 76-87.]
[13] 侯佳. 多车道高速公路分流影响区交通特性及通行能力分析[D]. 南京: 东南大学, 2018. [HOU J. The traffic
characteristics and capacity analysis method for diverge
influence arear on multi-lane freeways[D]. Nanjing:
Southeast University, 2018.]
[14] 张瑞琳. 自动驾驶车辆电控制动技术研究[D]. 北京: 北京 理 工 大 学, 2016. [ZHANG R L. Research on
electrical braking technology of autonomous vehicles[D].
Beijing: Beijing Institute of Technology, 2016.]
[15] 曲大义, 赵梓旭, 贾彦峰, 等. 基于Lennard-Jones 势的车辆跟驰动力学特性及模型[J]. 吉林大学学报(工学
版), 2022, 52(11): 2549-2557. [QU D Y, ZHAO Z X,
JIA Y F, et al. Car-following dynamics characteristics
and model based on Lennard-Jones potential[J]. Journal
of Jilin University(Engineering and Technology Edition),
2022, 52(11): 2549-2557.]
|