[1]崔叙,喻冰洁,杨林川,等.城市轨道交通出行的时空特征及影响因素非线性机制:基于梯度提升决策树的成都实证[J]. 经济地理,2021,41(7): 61-72. [CUI S, YU
B J, YANG L C, et al. Spatio-temporal characteristics
and non-linear influencing factors of urban rail transit:
The case of Chengdu using the gradient boosting
decision tree[J]. Economic Geography, 2021, 41(7): 61
72.]
[2]INGVARDSON J B, NIELSEN O A. How urban density,
network topology and socio-economy influence public
transport ridership: Empirical evidence from 48
European metropolitan areas[J]. Journal of Transport
Geography, 2018, 72: 50-63.
[3]LOO B P Y, CHEN C, CHAN E T H. Rail-based transit
oriented development: lessons from New York City and
Hong Kong[J]. Landscape and Urban Planning, 2010, 97
(3): 202-212.
[4]
GAN Z, FENG T, YANG M, et al. Analysis of metro
station ridership considering spatial heterogeneity[J].
Chinese Geographical Science, 2019, 29: 1065-1077.
[5]LI L, ZHONG L, RAN B, et al. Analysis of the
relationship
between metro ridership and built
environment: A machine learning method considering
combinational features[J]. Tunnelling and Underground
Space Technology, 2024, 144: 105564.
[6]杨红,申犁帆,胡议文,等.老年人地铁出行时空特征及与建成环境非线性关系:以武汉市为例[J].地理科学进展, 2023, 42(3): 491-504. [YANG H, SHEN L F,
HU Y W, et al. Spatial and temporal characteristics of
elderly people's metro travel behavior and its non
linear relationship with the built environment: A case
study of Wuhan City[J]. Progress in Geography, 2023, 42
(3): 491-504.]
[7]PENG B, ZHANG Y, LI C, et al. Nonlinear, threshold
and synergistic effects of first/last-mile facilities on metro
ridership[J]. Transportation Research Part D: Transport
and Environment, 2023, 121: 103856.
[8] XU T, YANG H, CHEN D, et al. Exploring spatial
variation in relationship between station level metro
ridership and influencing variables, 2019[C]. 5th
International Conference on Transportation Information
and Safety (ICTIS), IEEE, 2019.
[9]
MUSELLA G, CASTELLANO R, BRUNO E. Evaluating
the spatial heterogeneity of innovation drivers: A
comparison between GWR and GWPR[J]. METRON,
2023, 81(3): 343- 365.
[10] TASYUREK M, CELIK M. 4D-GWR: Geographically,
altitudinal, and temporally weighted regression[J]. Neural
Computing and Applications, 2022, 34(17): 14777
14791.
[11] 李想, 晏启鹏,骆晨,等.空间异质性建成环境对地铁与公交换乘客流的影响[J].交通运输系统工程与信息, 2023, 23(2): 100-110. [LI X, YAN Q P, LUO C,
et al. Impact of built environment on flow of transfer
passengers between subway and bus considering spatial
heterogeneity[J]. Journal of Transportation Systems
Engineering and Information Technology, 2023, 23(2):
100-110.]
[12] 马健霄, 赵飞燕,尹超英,等. 建成环境和出租车需求对网约车出行需求影响的时空间分异模式[J].
交通运输系统工程与信息,2023,23(5):136-145. [MA
J X, ZHAO F Y, YIN C Y, et al. Spatial-temporal
heterogeneity effects of built environment and taxi
demand on ride-hailing demand[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2023, 23(5): 136-145.]
[13] 西安市自然资源和规划局.2021年西安市交通发展年度报告[R/OL]. (2023-10-11) [2024-03-04]. http:
//zygh.xa.gov.cn/zwgk/ghjh/ 64a3d59af8fd1c1a703495a5.
html. [Xi'an Municipal Bureau of Natural Resources
and Planning. 2021 Annual Report on Urban
Transport Development in Xi'an[R/OL]. (2023-10-
11)
[2024-03-04]. http://zygh.xa.gov.cn/zwgk/ghjh/
64a3d59af8fd1c1a703495a5. html.]
[14] PANG L, JIANG Y, WANG J, et al. Research of metro
stations with varying patterns of ridership and their
relationship with built environment, on the example of
Tian**, China[J]. Sustainability, 2023, 15(12): 9533.
[15] 贺鹏, 李雯茜,李妍,等.建成环境对轨道交通客流非线性影响的空间特征[J].交通运输系统工程与信息,
2023, 23(3): 187-194. [HE P, LI W X, LI Y, et al.
Spatial patterns of nonlinear effects of built environment
on Beijing subway ridership[J]. Journal of Transportation
Systems Engineering and Information Technology, 2023,
23(3): 187-194.]
|