交通运输系统工程与信息 ›› 2024, Vol. 24 ›› Issue (5): 1-13.DOI: 10.16097/j.cnki.1009-6744.2024.05.001
• 重大工程应用技术与政策 • 下一篇
刘涛*1a,1b,郭家新1a,韩莹1c,唐春艳2
收稿日期:
2024-06-25
修回日期:
2024-07-18
接受日期:
2024-07-22
出版日期:
2024-10-25
发布日期:
2024-10-25
作者简介:
刘涛(1989- ),男,四川人,副教授,博士。
基金资助:
LIU Tao*1a,1b, GUO Jiaxin1a, HAN Ying1c, TANG Chunyan2
Received:
2024-06-25
Revised:
2024-07-18
Accepted:
2024-07-22
Online:
2024-10-25
Published:
2024-10-25
Supported by:
摘要: 氢燃料电池公交车的使用有助于减少碳排放和促进交通运输系统的可持续发展。本文通过检索国内外相关数据库,系统梳理了氢燃料电池公交的国内外相关研究文献,分别从发展氢燃料电池公交的可行性与前景,氢燃料电池公交系统评估及与其他公交方式的对比分析,氢燃料电池公交的社会接受度,氢燃料电池公交的规划与运营管理,以及氢燃料电池公交的安全性分析这5个方面,对国内外氢燃料电池公交研究的相关文献进行综述。研究发现:由于氢燃料电池公交目前仍处于探索发展阶段,关于其可行性、系统评估和社会接受度的研究相对较多,而关于其系统规划与运营管理和安全性分析的研究还相对较少;我国虽然在氢燃料电池公交领域的科学研究和实践起步较晚,但目前已处于世界前列;在政策支持和市场需求的双重推动下,氢燃料电池公交在我国正快速发展。基于文献综述内容,本文进一步分析了现有研究存在的不足,提出后续研究的建议。研究认为:可以从降低氢燃料电池公交成本,提升氢燃料电池公交基础设施建设,提高氢燃料电池公交社会接受度,以及加强氢燃料电池公交安全管理这4个方面进一步开展深入研究,尤其需要加强氢燃料电池公交电池技术革新、配套基础设施建设以及运行安全保障的研究。未来氢燃料电池公交将在旅游景区运输、大型体育赛事交通运输、城市交通运输及城际长途运输等交通运输场景具有广阔的应用前景。学术界和工业界应主动结合氢能产业和交通运输发展的相关政策要求和实践需求,针对氢燃料电池公交发展的重点与难点,持续开展深入研究,共同助力氢燃料电池公交的健康可持续发展。
中图分类号:
刘涛, 郭家新, 韩莹, 唐春艳. 氢燃料电池公交研究文献综述及展望[J]. 交通运输系统工程与信息, 2024, 24(5): 1-13.
LIU Tao, GUO Jiaxin, HAN Ying, TANG Chunyan. Hydrogen Fuel Cell Bus: A Literature Review and Prospects[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(5): 1-13.
[1]交通运输部.绿色交通“十四五”发展规划[EB/OL]. (2022-01-21) [2024-05-22]. https://www.gov.cn/ zhengce/ zhengceku/ 2022-01/21/ content_5669662.htm. [The Ministry of Transport. The "14th Five-Year" plan for green transportation [EB/OL]. (2022-01-21)[2024-05-22]. https://www.gov.cn/zhengce/zhengceku/2022-01/ 21/content_5669662.htm.] [2]国务院.“十四五”现代综合交通运输体系发展规划 [EB/OL]. (2022-01-18) [2024-05-22]. https://www.gov. cn/zhengce/ content/2022-01/18/ content_5669049.htm. [The State Council of the People's Republic of China. "14th Five-Year" plan modern comprehensive transportation system development plan [EB/OL]. (2022-01-18) [2024-05-22]. https://www.gov.cn/ zhengce/content/2022-01/18/content_5669049.htm.] [3]国家发展改革委,国家能源局.氢能产业发展中长期规划(2021—2035年)[EB/OL]. (2022-03-23)[2024-06 13]. https://www.nea.gov.cn/2022- 03/23/c_1310525755. htm. [National Development and Reform Commission, National Energy Administration. Medium and long-term plan for the development of hydrogen Energy industry (2021-2035) [EB/OL]. (2022-03-23) [2024-06-13]. https://www.nea.gov.cn/2022-03/23/c_1310525755.htm.] [4]国家标准化管理委员会,国家发展改革委,等.氢能产业标准体系建设指南(2023版)[EB/OL]. (2023-07-26) [2024- 07- 09]. https://www.gov.cn/zhengce/zhengceku/ 202308/ content_6897986.htm. [Standardization Administration of the People's Republic of China, National Development and Reform Commission, et al. Guidelines for the construction of hydrogen energy industry standard system (2023 Edition) [EB/OL]. (2023-07-26) [2024-07-09]. https://www.gov.cn/ zhengce/zhengceku/202308/content_6897986.htm.] [5]交通运输部,等.交通运输大规模设备更新行动方案 [EB/OL]. (2024-06-07) [2024-06-13]. https://xxgk.mot. gov.cn/ 2020/ jigou/ zhghs/ 202406/t20240607_4142138. html. [The Ministry of Transport, et al. Action plan for large-scale equipment renewal of transportation [EB/OL]. (2024-06-07) [2024-06-13]. https://xxgk.mot.gov.cn/ 2020/jigou/zhghs/202406/t20240607_4142138.html.] [6]BAHARUDDIN N A, WAN YUSOFF W N A, ABD AZIZ A J, et al. Hydrogen fuel cells for sustainable energy: Development and progress in selected developed countries[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1078(1): 012011. [7]SAMSUN R, REX M. Deployment of fuel cell vehicles in road transport and the expansion of the hydrogen refueling station network: 2023 update[M]. Julich: Energy & Environment, 2023. [8]汪鸣,向爱兵,杨宜佳.“十四五”我国交通运输发展思路[J]. 北京交通大学学报(社会科学版), 2022, 21(2): 68-75. [WANG M, XIANG A B, YANG Y J. Ideas for the development of China's transportation during the "14th Five-Year Plan"[J]. Journal of Beijing Jiaotong University (Social Sciences), 2022, 21(2): 68-75.] [9] AJANOVIC A, GLATT A, HAAS R. Prospects and impediments for hydrogen fuel cell buses[J]. Energy, 2021, 235: 121340. [10] BAKKER S, KONINGS R. The transition to zero emission buses in public transport: The need for institutional innovation[J]. Transportation Research Part D: Transport and Environment, 2018, 64: 204-215. [11] CHEN F, FERNANDES T R C, YETANO ROCHE M, et al. Investigation of challenges to the utilization of fuel cell buses in the EU vs transition economies[J]. Renewable and Sustainable Energy Reviews, 2007, 11 (2): 357-364. [12] STECULA K, OLCZAK P, KAMINSKI P, et al. Towards sustainable transport: Techno-economic analysis of investing in hydrogen buses in public transport in the selected city of Poland[J]. Energies, 2022, 15(24): 9456. [13] FAKHREDDINE O, GHARBIA Y, DERAKHSHANDEH J F, et al. Challenges and solutions of hydrogen fuel cells in transportation systems: A review and prospects[J]. World Electric Vehicle Journal, 2023, 14(6): 156. [14] TRENCHER G, TAEIHAGH A, YARIME M. Overcoming barriers to developing and diffusing fuel-cell vehicles: Governance strategies and experiences in Japan [J]. Energy Policy, 2020, 142: 111533. [15] 毛保华, 卢霞,黄俊生,等.碳中和目标下氢能源在我国运输业中的发展路径[J].交通运输系统工程与信息, 2021, 21(6): 234-243. [MAO B H, LU X, HUANG J S, et al. The development path of hydrogen energy in China's transportation industry under the goal of carbon neutrality[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 234-243.] [16] WANG Z, YU J, LI G, et al. Time for hydrogen buses? Dynamic analysis of the Hong Kong bus market[J]. Transportation Research Part D: Transport and Environment, 2023, 115: 103602. [17] LI Y, KIMURA S. Economic competitiveness and environmental implications of hydrogen energy and fuel cell electric vehicles in ASEAN countries: The current and future scenarios[J]. Energy Policy, 2021, 148: 111980. [18] LANGFORD B C, CHERRY C. Transitioning a bus transit fleet to hydrogen fuel: A case study of Knoxville area transit[J]. International Journal of Hydrogen Energy, 2012, 37(3): 2635-2643. [19] SADIK-ZADA E R, SANTIBANEZ GONZALEZ E D, GATTO A, et al. Pathways to the hydrogen mobility futures in German public transportation: A scenario analysis[J]. Renewable Energy, 2023, 205: 384-392. [20] YEUNG G, LIU Y. Local government policies and public transport decarbonization through the production and adoption of fuel cell electric vehicles (FCEVs) in China [J]. Journal of Cleaner Production, 2023, 422: 138552. [21] VODOVOZOV V, RAUD Z, PETLENKOV E. Review of energy challenges and horizons of hydrogen city buses[J]. Energies, 2022, 15(19): 6945. [22] PARK H S, LEE M K. A study on the importance of fuel cell bus supply expansion policy[J]. Innovation Studies, 2022, 17(2): 147-176. [23] ZHANG G, ZHANG J, XIE T. A solution to renewable hydrogen economy for fuel cell buses: A case study for Zhangjiakou in north China[J]. International Journal of Hydrogen Energy, 2020, 45(29): 14603-14613. [24] DIXON R K, WANG X, WANG M Q, et al. Development and demonstration of fuel cell vehicles and supporting infrastructure in China[J]. Mitigation and Adaptation Strategies for Global Change, 2011, 16(7): 775-789. [25] CHAUBE A, CHAPMAN A, SHIGETOMI Y, et al. The role of hydrogen in achieving long term Japanese energy system goals[J]. Energies, 2020, 13(17): 4539. [26] RIBAU J P, SILVA C M, SOUSA J M C. Efficiency, cost and life cycle CO2 optimization of fuel cell hybrid and plug-in hybrid urban buses[J]. Applied Energy, 2014, 129: 320-335. [27] WANG B, LI Z, ZHOU J, et al. Technological-economic assessment and optimization of hydrogen-based transportation systems in China: A life cycle perspective [J]. International Journal of Hydrogen Energy, 2023, 48 (33): 12155-12167. [28] HARALDSSON K, FOLKESSON A, ALVFORS P. Fuel cell buses in the Stockholm CUTE project: First experiences from a climate perspective[J]. Journal of Power Sources, 2005, 145(2): 620-631. [29] SHAYEGAN S, HART D, PEARSON P, et al. Analysis of the cost of hydrogen infrastructure for buses in London [J]. Journal of Power Sources, 2006, 157(2): 862-874. [30] THANH H, AHLUWALIA R, EUDY L, et al. Status of hydrogen fuel cell electric buses worldwide[J]. Journal of Power Sources, 2014, 269: 975-993. [31] MCKENZIE E C, DURANGO-COHEN P L. Environmental life-cycle assessment of transit buses with alternative fuel technology[J]. Transportation Research Part D: Transport and Environment, 2012, 17(1): 39-47. [32] HORMANDINGER G, LUCAS N J D. An evaluation of the economics of fuel cells in urban buses[J]. International Journal of Energy Research, 1997, 21(6): 495-525. [33] CHANG C C, LIAO Y T, CHANG Y W. Life cycle assessment of alternative energy types-including hydrogen-for public city buses in Taiwan[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18472 18482. [34] COCKROFT C J, OWEN A D. The economics of hydrogen fuel cell buses[J]. Economic Record, 2007, 83 (263): 359-370. [35] KARACA A E, DINCER I, NITEFOR M. Development and analysis of new pneumatic based powering options for transit buses: A comparative assessment[J]. Energy Conversion and Management, 2022, 256: 115399. [36] MUNOZ P, FRANCESCHINI E A, LEVITAN D, et al. Comparative analysis of cost, emissions and fuel consumption of diesel, natural gas, electric and hydrogen urban buses[J]. Energy Conversion and Management, 2022, 257: 115412. [37] JELTI F, ALLOUHI A, AL-GHAMDI S G, et al. Environmental life cycle assessment of alternative fuels for city buses: A case study in Oujda city, Morocco[J]. International Journal of Hydrogen Energy, 2021, 46(49): 25308-25319. [38] ALLY J, PRYOR T. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems[J]. Journal of Power Sources, 2007, 170(2): 401 411. [39] HENSHER D A, WEI E, BALBONTIN C. Comparative assessment of zero emission electric and hydrogen buses in Australia[J]. Transportation Research Part D: Transport and Environment, 2022, 102: 103130. [40] KIM H, HARTMANN N, ZELLER M, et al. Comparative TCO analysis of battery electric and hydrogen fuel cell buses for public transport system in small to midsize cities[J]. Energies, 2021, 14(14): 4384. [41] SAXENA A, YADAV A K. Evaluating the appropriate fuel-based bus technology in Indian context by integrating fuzzy AHP-fuzzy TOPSIS[J]. European Transport, 2023, 92(6): 1-15. [42] CHANG C C, HUANG P C. Carbon footprint of different fuels used in public transportation in Taiwan: A life cycle assessment[J]. Environment, Development and Sustainability, 2022, 24(4): 5811-5825. [43] LOZANOVSKI A, WHITEHOUSE N, KO N, et al. Sustainability assessment of fuel cell buses in public transport[J]. Sustainability, 2018, 10(5): 1480. [44] LOGAN K G, NELSON J D, HASTINGS A. Electric and hydrogen buses: Shifting from conventionally fuelled cars in the UK[J]. Transportation Research Part D: Transport and Environment, 2020, 85: 102350. [45] STEMPIEN J P, CHAN S H. Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas[J]. Journal of Power Sources, 2017, 340: 347-355. [46] POGGIO A E, BALEST J, ZUBARYEVA A, et al. Monitored data and social perceptions analysis of battery electric and hydrogen fuelled buses in urban and suburban areas[J]. Journal of Energy Storage, 2023, 72: 108411. [47] HARALDSSON K, FOLKESSON A, SAXE M, et al. A first report on the attitude towards hydrogen fuel cell buses in Stockholm[J]. International Journal of Hydrogen Energy, 2006, 31(3): 317-325. [48] HEO J Y, YOO S H. The public's value of hydrogen fuel cell buses: A contingent valuation study[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4232-4240. [49] O'GARRA T, MOURATO S, GARRITY L, et al. Is the public willing to pay for hydrogen buses? A comparative study of preferences in four cities[J]. Energy Policy, 2007, 35(7): 3630-3642. [50] SAXE M, FOLKESSON A, ALVFORS P. A follow-up and conclusive report on the attitude towards hydrogen fuel cell buses in the CUTE project: From passengers in Stockholm to bus operators in Europe[J]. International Journal of Hydrogen Energy, 2007, 32(17): 4295-4305. [51] LIPMAN T E, ELKE M, LIDICKER J. Hydrogen fuel cell electric vehicle performance and user-response assessment: Results of an extended driver study[J]. International Journal of Hydrogen Energy, 2018, 43(27): 12442-12454. [52] LEE Y, JUNG J, SONG H. Public acceptance of hydrogen buses through policy instrument: Local government perceptions in Changwon city[J]. International Journal of Hydrogen Energy, 2023, 48(36): 13377-13389. [53] TARIGAN A K M, BAYER S B. Temporal change analysis of public attitude, knowledge and acceptance of hydrogen vehicles in Greater Stavanger, 2006-2009[J]. Renewable & Sustainable Energy Reviews, 2012, 16(8): 5535-5544. [54] SON W, LEE S, WOO J. Community acceptance of hydrogen power plant projects: The case of South Korea [J]. Renewable & Sustainable Energy Reviews, 2023, 187: 113778. [55] ROCHE M Y, MOURATO S, FISCHEDICK M, et al. Public attitudes towards and demand for hydrogen and fuel cell vehicles: A review of the evidence and methodological implications[J]. Energy Policy, 2010, 38 (10): 5301-5310. [56] O'GARRA T, PEARSON P, MOURATO S. Public acceptability of hydrogen fuel cell transport and associated refuelling infrastructures[A]. Risk and the Public Acceptance of New Technologies, 2007: 126-153. [57] BIGERNA S, POLINORI P. Willingness to pay and public acceptance for hydrogen buses: A case study of Perugia[J]. Sustainability, 2015, 7(10): 13270-13289. [58] KHAN U, YAMAMOTO T, SATO H. Consumer preferences for hydrogen fuel cell vehicles in Japan[J]. Transportation Research Part D, 2020, 87: 102542. [59] KHAN U, YAMAMOTO T, SATO H. An insight into potential early adopters of hydrogen fuel-cell vehicles in Japan[J]. International Journal of Hydrogen Energy, 2021, 46(18): 10589-10607. [60] MAURER W, JUSTL M, KEUSCHNIGG R. Improving hydrogen refueling stations to achieve minimum refueling costs for small bus fleets[J]. International Journal of Hydrogen Energy, 2023, 48(77): 29821 29834. [61] CAPONI R, FERRARIO A M, DEL ZOTTO L, et al. Hydrogen refueling stations and fuel cell buses four-year operational analysis under real-world conditions[J]. International Journal of Hydrogen Energy, 2023, 48(54): 20957-20970. [62] WIJAYASEKERA S C, HEWAGE K, RAZI F, et al. Fueling tomorrow's commute: Current status and prospects of public bus transit fleets powered by sustainable hydrogen[J]. International Hydrogen Energy, 2024, 66: 170-184. Journal of [63] DURANGO-COHEN P L, MCKENZIE E C. Trading off costs, environmental impact, and levels of service in the optimal design of transit bus fleets[J]. Transportation Research Part A: Policy and Practice, 2018, 114: 354 363. [64] PAMUCAR D, IORDACHE M, DEVECI M, et al. A new hybrid fuzzy multi-criteria decision methodology model for prioritizing the alternatives of the hydrogen bus development: A case study from Romania[J]. International Journal of Hydrogen Energy, 2021, 46(57): 29616-29637. [65] JOFFE D, HART D, BAUEN A. Modelling of hydrogen infrastructure for vehicle refuelling in London[J]. Journal of Power Sources, 2004, 131(1/2): 13-22. [66] BUBNA P, BRUNNER D, GANGLOFF J J, et al. Analysis, operation and maintenance of a fuel cell/ battery series-hybrid bus for urban transit applications [J]. Journal of Power Sources, 2010, 195(12): 3939 3949. [67] SCHWOON M. A tool to optimize the initial distribution of hydrogen filling stations[J]. Transportation Research Part D: Transport and Environment, 2007, 12(2): 70-82. [68] TAO Y, QIU J, LAI S, et al. Collaborative planning for electricity distribution network and transportation system considering hydrogen fuel cell vehicles[J]. IEEE Transactions on Transportation Electrification, 2020, 6 (3): 1211-1225. [69] LI S, LONG J, SUI P C, et al. Addition of hydrogen refueling for fuel cell bus fleet to existing natural gas stations: A case study in Wuhan, China[J]. International Journal of Energy Research, 2019, 43(13): 7557-7572. [70] BENOLIEL P K. Modeling the transition to zero-emission transit buses[D]. Davis: California: UC Davis, 2022. [71] 房晋源.双碳战略背景下氢燃料电池公交车运行监管指标体系[J]. 综合运输, 2023, 45(7): 21-26. [FANG J Y. Regulatory index system of hydrogen fuel cell bus operation under the background of dual carbon strategy [J]. China Transportation Review, 2023, 45(7): 21-26.] [72] 牛田雨.氢燃料电池公交车量化风险分析[D].济南:山东大学, 2023. [NIU T Y. Quantitative risk analysis of hydrogen fuel cell buses[D]. Jinan: Shandong University, 2023.] [73] JIANG G, CHENG B, JIN Z, et al. Simulation, analysis and evaluation of the crash safety of the hydrogen system in fuel cell bus[J]. Automotive Engineering, 2010, 32: 774-777, 802. [74] KIM K, SHIN J, HAN K, et al. Study on side impact test procedure of hydrogen bus[J]. Journal of Auto-vehicle Safety Association, 2021, 13(4): 92-98. [75] SCHIAROLI A, SCARPONI G E, ANTONIONI G, et al. Hazard footprint of alternative fuel storage concepts for hydrogen-powered urban buses[J]. International Journal of Hydrogen Energy, 2024, 50: 1430-1442. [76] YANG R, ZHANG W, LI S, et al. Finite element analysis and optimization of hydrogen fuel cell city bus body frame structure[J]. Applied Sciences, 2023, 13(19): 10964. |
[1] | 张兰怡, 徐艺诺, 王硕, 谢郑一, 翁大维, 王振昊, 胡喜生, 郑娉婷. 碳达峰背景下沿海城市群道路交通节能减排潜力[J]. 交通运输系统工程与信息, 2024, 24(5): 45-55. |
[2] | 张雅丽, 付锐, 魏文辉, 袁伟, 郭应时. 考虑速度模式的纯电动公交进出站生态驾驶策略[J]. 交通运输系统工程与信息, 2024, 24(5): 103-115. |
[3] | 茧敏, 陈绍宽, 王卓, 李昊. 城市轨道交通网络跨线列车开行方案优化模型研究[J]. 交通运输系统工程与信息, 2024, 24(5): 116-127. |
[4] | 孙元广, 邓澄远, 彭磊, 陈虹兵, 李纵然, 柏赟. 潮汐客流需求驱动的地铁列车不成对运行图节能优化方法[J]. 交通运输系统工程与信息, 2024, 24(5): 128-139. |
[5] | 岳昊, 董显龙, 王力, 曲秋莳, 张旭. 模块化公交系统车辆单元动态编组方案优化[J]. 交通运输系统工程与信息, 2024, 24(5): 160-172. |
[6] | 户佐安, 曾添, 杜俊, 魏易东, 王士博, 马毅. 双足运动微观视角下单列行人流建模与仿真研究[J]. 交通运输系统工程与信息, 2024, 24(5): 185-196. |
[7] | 金溪, 穆延. 暴雨内涝下城市路网抗涝韧性评估[J]. 交通运输系统工程与信息, 2024, 24(5): 226-236. |
[8] | 陈坚, 陈嘉果, 陈琦, 刘柯良, 代雪杨. 山地城市道路交通碳排放影响因素非线性关系模型[J]. 交通运输系统工程与信息, 2024, 24(5): 237-245. |
[9] | 牛振宁, 安琨, 马万经. 车网互动场景下电动网约车运营与充放电动态调度策略[J]. 交通运输系统工程与信息, 2024, 24(4): 50-59. |
[10] | 邓明君, 李书行, 李响, 张兵, 薛运强. 基于主线密度预测的快速路入口匝道控制方法[J]. 交通运输系统工程与信息, 2024, 24(4): 94-104. |
[11] | 李铁柱, 谢炳言, 刘天昊, 陈海波, 王召. 基于规则的信号交叉口纯电动公交节能驾驶策略[J]. 交通运输系统工程与信息, 2024, 24(4): 139-150. |
[12] | 姚恩建, 王鑫, 刘莎莎, 杨扬, 李成. 考虑机会充电与行程时间可靠性的区域多车型电动公交调度优化[J]. 交通运输系统工程与信息, 2024, 24(4): 151-165. |
[13] | 熊杰, 梁晶晶, 李向楠, 窦雪萍, 李同飞. 考虑分时电价和多车型的电动公交行车计划优化[J]. 交通运输系统工程与信息, 2024, 24(4): 188-199. |
[14] | 李洪运, 江志彬, 谷金晶, 刘伟, 王炳勋. 轨道交通远郊区段计划性停运对常乘客的转移影响[J]. 交通运输系统工程与信息, 2024, 24(4): 212-222. |
[15] | 陈红, 李晨光, 王铎, 段超杰, 姚振兴. 空间异质下地铁建成环境与站点覆盖客流吸引度关系研究[J]. 交通运输系统工程与信息, 2024, 24(4): 253-262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||