交通运输系统工程与信息 ›› 2024, Vol. 24 ›› Issue (5): 128-139.DOI: 10.16097/j.cnki.1009-6744.2024.05.012

• 系统工程理论与方法 • 上一篇    下一篇

潮汐客流需求驱动的地铁列车不成对运行图节能优化方法

孙元广1,邓澄远1,彭磊1,陈虹兵1,李纵然2,柏赟*2   

  1. 1. 广州地铁设计研究院股份有限公司,交通规划分院,广州 510010;2. 北京交通大学,综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044
  • 收稿日期:2024-04-05 修回日期:2024-07-15 接受日期:2024-07-22 出版日期:2024-10-25 发布日期:2024-10-22
  • 作者简介:孙元广(1975- ),男,山东莱阳人,教授级高工。
  • 基金资助:
    中央高校基本科研业务费专项资金(2023JBCZ002);国家自然科学基金(71971016);中国国家铁路集团有限公司科技研究开发计划(K2023X013)。

Energy-efficient Train Timetable Optimization Model for Urban Rail Transit Line with Asymmetric Passenger Demand

SUN Yuanguang1, DENG Chengyuan1, PENG Lei1, CHEN Hongbing1, LI Zongran2, BAI Yun*2   

  1. 1. Transportation Planning Branch, Guangzhou Metro Design and Research Institute Co Ltd, Guangzhou 510010, China; 2. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China
  • Received:2024-04-05 Revised:2024-07-15 Accepted:2024-07-22 Online:2024-10-25 Published:2024-10-22
  • Supported by:
    Fundamental Research Funds for the Central Universities (2023JBCZ002);National Natural Science Foundation of China (71971016);Science and Technology Research and Development Program of China National Railway Group (K2023X013)。

摘要: 针对城市轨道交通客流潮汐现象引起的大客流方向乘客滞留和小客流方向运力虚靡且牵引能耗高的问题,本文提出一种结合快慢车和变编组的不成对运输组织策略,并结合变编组技术提升运力供给灵活度的同时减少运能浪费,此外,开行部分跨站快车加速车底周转。基于此,构建开行方案、时刻表与车底运用计划协同优化模型,决策列车的双向开行频率、编组类型、停站方案、首站发车时刻及车底周转计划,从而最小化乘客的总旅行时间和全线总牵引能耗成本;并设计定制的变邻域搜索算法求解混合整数非线性规划模型。广州地铁14号线案例结果表明:与实际的成对运输方案相比,本文不成对运行方案可以将乘客总旅行时间减少6.52%,全线总牵引能耗降低34.20%,总目标函数减少11.40%;快车的开行加速了车底周转,减少了6列上线列车单元数量,可以更好地实现不成对运输组织;变编组技术可以进一步提升不成对运输计划的灵活性,大幅缩减上线列车单元数量,使线路的平均满载率提升约20%,线路总牵引能耗优化率提升约33%。结合快慢车和变编组技术的不成对运输策略实现运力精准灵活配置的同时节约列车运行能耗成本,达到运营降本增效的目的。

关键词: 城市交通, 不成对运输组织, 混合整数非线性规划, 潮汐客流, 列车运行图, 变编组

Abstract: To relieve the asymmetric phenomenon of urban rail transit line, such as the stranding of passengers in the heavy-demand direction, the wastage of capacity and high energy consumption in the low-demand direction, this paper proposes an asymmetric transportation strategy combining skip-stop tactics and flexible train composition technology. In this strategy, more train services will be arranged in the heavy-demand direction of the transit line, and the service frequencies will be reduced in the low-demand direction. The flexible train composition technology is also utilized to improve the flexibility of capacity supply and reduce energy consumption waste. In addition, several express trains are operated in the low- demand direction to accelerate the turnover speed of rolling stocks. Based on this, an integrated optimization model of operation plan, train timetable and rolling stock circulation plan were constructed to determine the bidirectional service frequency, train composition, stopping plan, timetable and circulation plan of rolling stocks, to minimize the total passenger travel time and total traction energy cost of the entire corridor. A customized variable neighborhood search algorithm is designed to solve the mixed integer nonlinear programming model. The case study in Guangzhou Metro Line 14 showed that: compared with the actual symmetric transportation strategy, the proposed method can reduce the total passenger travel time by 6.52 %, the total traction energy consumption by 34.20 %, and the total objective function by 11.40 %. Express trains can accelerate the turnover speed of the rolling stocks, reducing six on-line rolling stocks, which can facilitate the asymmetric strategy. Flexible train composition technology can further improve the flexibility of the capacity supply, and significantly reduce the number of on-line rolling stocks, where the average load factor of trains is increased by approximately 20%, and the optimization rate of the total traction energy consumption is increased by approximately 33%. The asymmetric strategy combined with skip-stop trains and flexible train composition can save train operating costs, and greatly improve the capacity matching degree under the asymmetric passenger demand.

Key words: urban traffic, asymmetric transportation strategy, mixed-integer nonlinear programming, asymmetric passenger demand, train timetable, flexible train composition

中图分类号: