[1] DAZIANO R A, SARRIAS M, LEARD B. Are consumers
willing to pay to let cars drive for them? Analyzing
response to autonomous vehicles[J]. Transportation
Research Part C: Emerging Technologies, 2017, 78: 150
164.
[2] ZHOU F, ZHENG Z, WHITEHEAD J, et al. Preference
heterogeneity in mode choice for car-sharing and shared
automated vehicles[J]. Transportation Research Part A:
Policy and Practice, 2020, 132: 633-650.
[3]刘志伟,刘建荣,邓卫.无人驾驶汽车对出行方式选择行为的影响[J].西南交通大学学报,2021,56(6):1161
1168. [LIU Z W, LIU J R, DENG W. Impact of
autonomous vehicle on travel mode choice behavior[J].
Journal of Southwest Jiaotong University, 2021, 56(6):
1161-1168. ]
[4]
刘锴,王静,王江波,等.考虑个体偏好异质性的定制公交选择行为[J]. 中国公路学报,2024, 37(6): 279
287. [LIU K, WANG J, WANG J B, et al. Study on
customized bus choice behavior considering individual
preference heterogeneity[J]. China Journal of Highway
and Transport, 2024, 37(6): 279-287.]
[5] VAN CRANENBURGH S, WANG S, VIJ A, et al. Choice
modelling in the age of machine learning-discussion
paper[J]. Journal of Choice Modelling, 2022, 42: 100340.
[6] ZHAO X, YAN X, YU A, et al. Prediction and behavioral
analysis of travel mode choice: A comparison of machine
learning and Logit models[J]. Travel Behaviour and
Society, 2020, 20: 22-35.
[7]
TAMIM KASHIFI M, JAMAL A, SAMIM KASHEFI M,
et al. Predicting the travel mode choice with
interpretable
machine
learning
techniques:
A
comparative study[J]. Travel Behaviour and Society,
2022, 29: 279-296.
[8]苏跃江,温惠英,袁敏贤,等.基于集成学习和居民属性数据的出行方式预测模型[J].交通运输系统工程与信息,2023, 23(3): 153-160. [SU Y J, WEN H Y, YUAN
M X, et al. Travel mode prediction model based on
ensemble learning and resident attribute data[J]. Journal
of Transportation Systems Engineering and Information
Technology, 2023, 23(3): 153-160.
[9]
REN Y, YANG M, CHEN E, et al. Exploring passengers'
choice of transfer city in air-to-rail intermodal travel
using an interpretable ensemble machine learning
approach[J]. Transportation, 2024, 51(4): 1493-1523.
[10] 李文权, 邓安鑫,郑炎,等.基于机器学习的中型城市居民出行方式选择行为研究[J].交通运输系统工程与信息,2024, 24(2): 13-23. [LI W Q, DENG A X, ZHENG
Y, et al. Analysis of residents' travel mode choice in
medium-sized city based on machine learning[J]. Journal
of Transportation Systems Engineering and Information
Technology, 2024, 24(2): 13-23.
[11] BIERLAIRE M, AXHAUSEN K, ABAY G. The
acceptance of modal innovation: The case of Swissmetro
[C]//Swiss Transport Research Conference, 2001.
[12] HAN Y, PEREIRA F C, BEN-AKIVA M, et al. A neural
embedded discrete choice model: Learning taste
representation with strengthened interpretability[J].
Transportation Research Part B: Methodological, 2022,
163: 166-186.
[13] YAN H, YAN K, JI G. Optimization and prediction in the
early design stage of office buildings using genetic and
XGBoost algorithms[J]. Building and Environment, 2022,
218: 109081.
[14] MARTÍN-BAOS J Á, LÓPEZ-GÓMEZ J A, RODRIGUEZ
BENITEZ L, et al. A prediction and behavioural analysis
of machine learning methods for modelling travel mode
choice[J]. Transportation Research Part C: Emerging
Technologies, 2023, 156: 104318.
|