Reference [1]An M . Gao Z Y. A new algorithm for solving the bi-level programming model of origin-destination demand estinates[J]. J Tsinghua Univ. 2000, (11):15-18. [2]Bard J F. Convex two-level optimization [J]. Mathematical Programming 1988.40: 15-27. [3]Bell M G H. The estimation of an origin-destination matrix from traffic counts[J]. Transportation Science,1983,17: 198- 217. [4]Bell M G H. Variance and covariance for origin-destination flows when estimated by Log-linear models[J].Transportation Research. 1984. 18B:497- 507. [5]Bell M G H. The estimation of origin-destination matrices by constrained generalized least squares[J]. Transportation Research, 1991. 25B: 13-22. [6]Brenninger-Gothe M, Jornsten K O. Lundgren J T. Estimation of origin-destination matrices from traffic counts using multiobjective programming formulations[J].Transportation Research, 1989,23B:257-269. [7]Carey M, Revelli R. Constrained estimation of direct demand functions and trip matrices[J]. Transportation Science, 1986. (3); 143-152. [8]Cascetta E. Estimation of trip matrices from traffic counts and survey data: A generalbed least squares estimator[J]. Transportation Research, 1984. 18B: 289-299. [9]Cascetta E. Nguyen S. A unified framework for estimating or updating origin/destination matrices from traffic counts[J].Transportation Research. 1988. 22B: 437-455. [10]Cochran W G. Sampling Techniques[M]. 2nh Edn Wiley, New, York. 1963. [11]Fisk C S. On combining maximum entropy trip matrix estimation with user optimal assignment[J].Transportation Research, 1988. 22B: 66-79. [12]Fisk C S. Trip matrix estimation from link traffic counts: The congested network case [J]. Transportation Research, 1989, 23B: 331-356. [13]Fisk C S. Boyce D E. A note on trip matrix estimation from link traffic count data[J]. Transportation Research, 1983, 17B: 245-250. [14]Gao Z Y. Song Y F. Si B F. Urban Transportation Continuous Equlibrium Network Design Problem: Theory and Method[M]. Chinese Railroad Publishing Press, Beijing, 2000. [15]Hall M D, Van Vliet D, Willumsen L G. SATURN: A simulation assignment model for the evaluation of traffic management schemes[J]. Transportation Engineering Control, 1980, 21: 168-176. [16]Hamerslag R. Immers B H. Estimation of trip matrices: Shortcomings and possibilities for improvement[J]. Transportation Research Record, 1988, 1203: 27-39. [17]Hendrickson C, McNeil S. Matrix entry estimation errors[J].Proceedings of the 9th International Symposium on Transportation and Traffic Theory. The Netherlands, Delft University, July. 1984, 413-430. [18]Inoue H. Test of accuracy of OD survey and its correction by screen line survey [J]. Traffic Engineering,1977, 12(6): 11-19 (in Japanese). [19]Inoue H. Statistical estimation of traffic demand using traffic census results[J]. Proceedings of JSCE, 1983. 332: 85-94 (in Japanese). [20]Iida Y. Takayama J. Kaneko N. Traffic demand estimation model by observed link flows considering trend of secular change[J]. Proceedings of JSCE. 1987. (383/IV-10): 83-91 (in Japanese). [21]Iida Y, Takayama J. Comparative study of model formulations on O-D matrix estimation from observed link Flows[J].Proceedings of the 4th World Conference on Transport Research, Canada, Vancouver, May, 1986,1570-1581 . [22] Maher M J.Inferences on trip matrices from observations on link volumes; a bayesian statistical approach[J]. Transportation Research.1983,17B. [23] McNeil S .Hendrickson C. A note on alternative matrix entry estimation techniques[J]. Transportation Research, 1985. 19B: 509-519. [24]Nguyen S. Estimating origin-destination matrices from observed flows[J]. In M. Florian (Ed.), Transportation Planning Models, 1984, 363-380, Elsevier Science Publishers, Amsterdam. [25]Nguyen S. Estimating OD Matrix from Network Data: A Network Equilibrium Approach [M]. Publication 87, Centre de Recherche Sur Les Transports, University de Montreal, 1977. [26]Sheffi Y. Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods [M]. Prentice-Hall. Englewood Cliffs, New Jersey. 1985. [27]Spiess H. A maximum likelihood model for estimating origin-destination matrices[J]. Transportation Research, 1987. 21B:395-412. [28]Tamura H, Yoshikawa T. Large-Scale Systems Control and Decision Making[M].Marcel Dekker, Inc. New York. 1990. [29]Van Zuylen J H,W illumsen L G. The most likely trip matrix estimated from traffic counts[J].Transportation Research, 1980. 14B: 281-293. [30]Van Zuylen J H. Branston D M. Consistent link flow estimation from counts[J]. Transportation Research, 1982. I6B:473- 476. [31]Willumsen L G. Estimating time-dependent trip matrices from traffic counts [J]. Proceedings of the 9th International Symposium on Transportation and Traffic Theory, The Netherlands, Delft University,July,1984,397-411. [32]Yang H. Sasaki T, lids Y, Asakura Y. Estimation of origin-destination matrices from link traffic counts on congested networks[J]. Transportation Research, 1992, 28B: 417-433. [33]Yang H. Lam W H K. Optimal road tolls under conditions of queuing and congestion [J]. Transportation Research, 1996. 30A: 319-332. [34]Yang H. Yagar S. Traffic assignment and signal control in saturated road network [J]. Transportation Research, 1995, 29A: 125-139. [35]Yang H, Yagar. Traffic assignment and traffic control in general freeway-arterial corridor systems[J]. Transportation Research, 1994. 28B: 463-486. [36]Yang H. Heuristic algorithms for the bilevel origin-destination matrix estimation problem[J]. Transportation Research, 1995. 29B: 231一242. [37]Yang H, lids Y. Sasaki T. An analysis of the reliability of an origin-destination trip matrix estimated from traffic counts[J]. Transportation Research, 1991, 25B: 351-363. [38]Yang H, Sasaki T. An analysis on the equilibrium-based estimation of origin-destination matrices from traffic counts[J]. Infrastructure Planning Review 9(in Japanese), 1991, 9: 29-36. [39]Yates F. Sampling Methods for Censurer and Surveys[M]. 4th Edn Griffin, London, 1981.
|