[1] 耿彦斌,于雷,赵慧.ITS数据质量控制技术及应用研究[J].中国安全科学学报,2005,15(1):82-87. Geng, Y, L. Yu, and H. Zhao.ITS Data Quality Control Techniques and Applications [J].China Safety Science Journal, 2005, 15(1): 82-87. [2] 汪海渊,朱彦东等.数据融合技术及其在交通领域中的应用[J].交通与计算机,2001,19:42-45. Wang H., Y. Zhu, D. Yang.Data Fusion Technique and Its Application in the Field of Transportation [J].Computer and Communications, 2001, 19: 42-45. [3] 赵慧.智能交通数据采集与融合技术研究[D].北京交通大学,2004. Zhao Hui. Data Collection and Fusion Techniques for Intelligent Transportation Systems [D].Bachelor’s Thesis of Beijing Jiaotong University, 2004. [4] 刘庆平.神经网络与支持向量机学习算法的理论及仿真研究[D].燕山大学硕士论文,2003. Liu, Q.A Study on Theory and Simulation of Neural Network and Support Vector Machine Learning Methods [D].Master’s Thesis of Yanshan University, 2003. [5] 张浩然,汪晓东.支持向量机的学习方法综述[J].浙江师范大学学报(自然科学版),2005,28(3):283-287. Zhang, H and X. Wang.A Review of Support Vector Machine Learning Algorithms [J].Journal of Zhejiang Normal University (Nat. Sci.), 2005, 28(3): 283-288. [6] Casasent, D, and Y. C. Wang.Automatic Target Recognition Using New Support Vector Machine.Proceedings of The International Joint Conference on Neural Networks (IJCNN), 2005, VOLS 1-5: 84-89. [7] Trafalis, T. B., and R. C. Gilbert.Maximum Margin Classifiers With Noisy Data: A Robust Optimization Approach. Proceedings of The International Joint Conference on Neural Networks (IJCNN), 2005, VOLS 1-5: 2826-2830. [8] 刘智勇.智能交通控制理论及其应用[M].北京:科学出版社,2003. Liu, Z.Theory and Application of Intelligent Transportation Control [M].Beijing: Science Press, 2003. [9] 孙德山,吴今培.一类支持向量机在车辆识别中的应用[J].交通运输系统工程与信息,2003,3(4):34-37. Sun, D., and J. Wu.Vehicle Recognition Based on 1-SVM [J].Journal of Transportation Systems Engineering and Information Technology, 2003,3(4): 34-37. [10] 王定成.支持向量机回归与控制的研究[D].中国科学技术大学博士论文,2003. Wang, D.A Study on Regression and Control of Support Vector Machine [D].The Dissertation of University of Science and Technology of China, 2003. [11] 邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2004:93-132. Deng, N. and Y. Tian.A New Method of Data Mining—Support Vector Machine [M].Beijing: Science Press, 2004: 93-132.
|