交通运输系统工程与信息 ›› 2015, Vol. 15 ›› Issue (1): 123-129.

• 系统工程理论与方法 • 上一篇    下一篇

基于岭回归—BP 神经网络的管制工作负荷预测方法

温瑞英*,王红勇   

  1. 中国民航大学空中交通管理学院,天津300300
  • 收稿日期:2014-07-25 修回日期:2014-11-17 出版日期:2015-02-25 发布日期:2016-02-25
  • 基金资助:

    国家自然科学基金委员会与中国民用航空局联合资助项目(U1333108);天津市应用基础与前沿技术研究计划 (14JCQNJC04500);中央高校基本科研业务费(ZXH2011C007);校级科研启动基金(08QD01X).

A Forecasting Method of Controller’s Workload Based on Ridge Regression—BP Neural Network

WEN Rui-ying,WANG Hong-yong   

  1. Air Traffic Management College, Civil Aviation University of China, Tianjin 300300, China
  • Received:2014-07-25 Revised:2014-11-17 Online:2015-02-25 Published:2016-02-25

摘要:

基于空中交通复杂程度刻画管制工作负荷是当前空中交通管理领域的研究热点.本文采集了厦门空管站的雷达数据,计算得出10 个空中交通复杂性评价指标数值,通过共线性诊断发现复杂性指标间存在较强的多重共线性.在利用岭迹图对复杂性评价指标进行筛选的基础上,建立岭回归—BP神经网络组合模型对管制员工作负荷进行预测,并通过实测陆空通话数据进行验证.结果表明,本文提出的岭回归—BP神经网络组合模型收敛速度快、训练时间少;组合模型的均方误差、均方根误差、平均绝对误差、平均绝对相对误差等4项性能指标都相对较小,预测精度较高.

关键词: 航空运输, 管制员工作负荷, 岭回归, 神经网络, 交通复杂性

Abstract:

It is becoming a new hot topic in the field of air traffic management that evaluating the controller’s workload by the traffic complexity factors. Based on the radar data of Xiamen air traffic control station, 10 typical complexity evaluation factors were calculated. The strong multi-co-linearity among various complexity factors is discovered through co- linearity diagnosis. Using the ridge trace plot of ridge regression, the complexity evaluation factors are selected, and the combined model of ridge regression and neural network are established to predict the controller’s workload. The forecasting results are verified by the pilot/controller voice communication data. It shows that the combination model of ridge regression and BP neural network has fast convergence speed and less training time. The combined forecasting model has high precision because four performance indexes such as mean square error, root mean square error, mean absolute error and mean absolute relative errors are relatively small.

Key words: air transportation, controller’s workload, ridge regression, neural network, traffic complexity

中图分类号: