[1] 郭经纬, 彭其渊. 基于三叉树期权理论的铁路货运定价模型[J]. 交通运输系统工程与信息, 2014, 14(4): 194- 200. [GUO J W, PENG Q Y. Railway freight pricing model based on trigeminal tree[J]. Journal of Transportation Systems Engineering and Information Technology, 2014,14(4):194-200.]
[2] Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Financial Economics, 1976, 3(1-2): 125-144.
[3] Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973,81(3): 637-654.
[4] Cox J C, Ross S A. The valuation of options for alternative stochastic processes[J]. Journal of Financial Economics, 1976, 3(1-2): 145-166.
[5] Cox J C, Ross S A Ross, Mark Rubinstein. Option pricing: A simplified approach[J]. Journal of Financial Economics, 1979, 7(3) :229-263.
[6] Lim A E B. Mean-variance hedging when there are jumps[J]. Journal on Control and Optimization, 2005, 44 (5):1893-1922.
[7] Kohlmann M, Xiong D W, Ye Z X. Mean variance hedging in a general jump model[J]. Applied Mathematical Finance, 2010,17(1):29-57.
[8] Miao D W C, Lin X C S, Chao W L. Option pricing under jump- diffusion models with mean- reverting bivariate jumps[J]. Operations Research Letters, 2014, 42(1): 27- 33.
[9] Nikos K N, Ioannis K, Nikos C P, et al. Freight options: Price modelling and empirical analysis[J]. Transportation Research Part E: Logistics and Transportation Review, 2013, 51(3): 82-94.
[10] Jacek J, Mariusz N. Jump-diffusion processes in random environments[J]. Journal of Differential Equations, 2014, 257(7): 2671-2703.
[11] Gukhal C R. Analytical valuation of american options on jump diffusion processes[J]. Mathematical finance, 2001, 11(1):97-115.
[12] Steen Kr, Roar A, Sigbjørn S. Pricing freight rate options[J]. Transportation Research Part E: Logistics and Transportation Review, 2007, 43(5): 535-548.
[13] 冯芬玲, 李菲菲. 基于期权理论的铁路货运定价模型[J]. 铁道科学与工程学报, 2012, 9(2):72-78. [FENG F L,LI F F. Pricing model of railway cargo transport based on option theory[J]. Journal of Railway Science and Engineering. 2012, 9(2):72-78.]
[14] Frittelli M. The minimal entropy martingale measures and the valuation problem in incomplete markets[J]. Mathematical Finance, 2000, 10(1):39-52.
[15] Amin K. Jump diffusion option valuation in discrete time[J]. Finance,1993, 48(5):1833-1863.
[16] 王晓林, 杨招军. 基于效用的永久性可转换债券定价[J]. 管理科学, 2013, 26(3):100-107. [WANG X L,YANG Z J. Permanent convertible bonds pricing based on utility theory[J]. Journal of Management Science, 2013, 26(3):100-107.]
[17] Kou S G. A jump diffusion model for option pricing[J]. Management Science, 2002, 48(8):1086-1101.
[18] João Pedro R, José Carlos D, João Pedro V N. Pricing and static hedging of American-style options under the jump to default extended CEV model[J]. Journal of Banking & Finance, 2013, 37(11):4059-4072.
[19] Girsanov I V. On transforming a certain class of stoehastic proeesses by absolutely continuous substitution of measures[J]. Theory of Probability & Its Applications, 1962, 5(3): 285-301. 202 |