交通运输系统工程与信息 ›› 2015, Vol. 15 ›› Issue (3): 64-69.

• 智能交通系统与信息技术 • 上一篇    下一篇

基于少数据云推理的短时交通流预测模型

杨锦伟1a,2, 肖新平1a,郭金海*1a,3,毛树华1b   

  1. 1. 武汉理工大学a. 理学院,b. 可靠性工程中心, 武汉430063;2. 平顶山学院数学与信息科学学院, 河南,平顶山 467000;3. 长江大学信息与数学学院, 湖北,荆州434023
  • 收稿日期:2014-11-20 修回日期:2015-03-30 出版日期:2015-06-25 发布日期:2015-06-29
  • 作者简介:杨锦伟(1983-),男,河南叶县人,博士生.
  • 基金资助:

    国家自然科学基金(51479151);高校博士点基金(20120143110001);教育部人文社科基金(11YJC630155);平顶山学院中青年骨干教师培养资助(20128024).

Short-term Traffic Flow Forecasting Model Based on Few Data Cloud Inference

YANG Jin-wei 1a, 2, XIAO Xin-ping1a, GUO Jin-hai1a, 3, MAO Shu-hua1b   

  1. 1a. College of Science; 1b. Reliability Engineering Institute,Wuhan University of Technology,Wuhan 430063, China; 2. School of Mathematics and Information Science, Pingdingshan University, Pingdingshan 467000, Henan, China; 3. School of Information and Mathematics, Yangtze University, Jingzhou 434023, Hubei, China
  • Received:2014-11-20 Revised:2015-03-30 Online:2015-06-25 Published:2015-06-29

摘要:

针对短时交通流所存在的不确定性即模糊性与随机性特点和准周期规律,提出基于灰色关联分析和少数据云推理的短时交通流预测模型.首先,针对短时交通流的准周期规律,运用灰色关联分析提取不同日期相同时段历史序列中最相似序列;其次,提出少数据逆向云算法,建立交通流序列一维云推理机制;最后综合利用历史云及当前云生成预测云,用于短时交通流实时预测.实例分析表明,预测精度良好,能够有效实现短时交通流的实时预测.该模型解决了少数据条件下正向云参数确定问题,降低了数据处理工作量,开拓了云模型在短时交通流中的应用.

关键词: 城市交通, 短时交通流预测, 少数据云推理, 灰关联分析, 云模型

Abstract:

Concerning the fuzziness and randomness characteristics and quasi-periodic regularity in shortterm traffic flow, a short-term traffic flow forecasting model is developed using grey relational analysis and few data cloud inference. Firstly, according to quasi-periodic regularity in short-term traffic flow, the most similar sequence in the history is extracted by gray relational analysis. Then, the backward cloud algorithm of few data is developed, which establishes the mechanism of one-dimensional cloud reasoning of traffic flow sequence. Finally, the prediction cloud is generated by a one-dimensional cloud inference of historical and current information. The results show that this model is used in forecasting short-term traffic flows and the accuracy is considerably improved. This proposed model solves the confirmation of forward cloud parameters under few data conditions, reducing the data processing workload and extending the application scope of the traditional cloud model.

Key words: urban traffic, short-term traffic flow forecasting, few data cloud inference, grey relational analysis, cloud model

中图分类号: