交通运输系统工程与信息 ›› 2016, Vol. 16 ›› Issue (6): 153-159.

• 系统工程理论与方法 • 上一篇    下一篇

面向个体需求的停车场分配模型

段满珍*,曹会云,董博,李珊珊   

  1. 华北理工大学建筑工程学院,河北唐山063009
  • 收稿日期:2016-05-27 修回日期:2016-08-03 出版日期:2016-12-25 发布日期:2016-12-26
  • 作者简介:段满珍(1974-),女,河北滦县人,副教授.
  • 基金资助:

    国家自然科学基金/National Natural Science Foundation of China (51378171,61374157) .

Parking Lots Distribution Model for the Individual Demand

DUAN Man-zhen,CAO Hui-yun,DONG Bo,LI Shan-shan   

  1. School of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China
  • Received:2016-05-27 Revised:2016-08-03 Online:2016-12-25 Published:2016-12-26

摘要:

为弥补群体式停车诱导的不足,定义了面向个体需求的个性化停车诱导概念和服务流程,构建了基于个性化诱导需求的停车场分配模型.模型上层目标是实现区域范围高峰停车泊位均衡利用,避免局部停车拥堵;下层目标是驾驶员总的步行距离最短,实现下层决策者的最大受益.设计了基于变形粒子群算法的嵌套优化算法,内嵌表上作业法求解下层规划.仿真实验显示,高峰停车溢出指数最大值由0.257 降至0.195,拥堵高峰时间由5.67 h 缩短到3.67 h,说明基于个性化停车诱导需求的停车场分配模型在均衡利用泊位资源,缩短停车拥堵时间,降低高峰停车指数方面具有显著作用.

关键词: 城市交通, 双层规划, 停车场分配, 嵌套优化算法, 个性化诱导

Abstract:

The conception of personalized parking guidance and service process are defined in order to make up for the drawback of public parking guidance. A parking lot distribution model based on the personalized parking guidance is proposed. The upper- level of the model is to achieve the balance use of parking resources in peak time and avoid local parking congestion, while the lower-level problem is to obtain minimize walking distances, achieve the maximum benefits of the drivers. A nested optimization algorithm of the bi-level programming model is designed based on the deformation particle swarm optimization (PSO), the main body of the optimization algorithm is used to solve the upper-level problem, a nested algorithm is used to solve the lower- level programming. In the simulation experiment, the maximum parking spillover index in peak time is reduced from 0.257 to 0.195 and congestion time is reduced from 5.67 hours to 3.67 hours. The results indicate that the parking lots distribution model, which based on the personalized parking guidance, has obvious effects in balance using parking resources, shorting the parking congestion and reducing peak parking index.

Key words: urban traffic, bi- level programming, parking lots distribution, nested optimization algorithm, personalized guidance

中图分类号: