[1] DAGANZO C F. Urban gridlock: Macroscopic modeling and mitigation approaches[J]. Transportation Research Part B: Methodological, 2007, 41(1): 49-62.
[2] ZHANG L, GARONI T M, DE GIER J. A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems[J]. Transportation Research Part B: Methodological, 2013, 49(Supplement C): 1-23.
[3] LAVAL J A, CASTRILL N F. Stochastic approximations for the macroscopic fundamental diagram of urban networks[J]. Transportation Research Part B: Methodological, 2015, 81(Part 3): 904-916.
[4] 闫飞, 田福礼, 史忠科. 城市交通信号的迭代学习控制及其对路网宏观基本图的影响[J]. 控制理论与应用, 2016, 33(5): 645-652. [YAN F, TIAN F L, SHI Z K. Iterative learning control for urban traffic signals and the impacts on macroscopic fundamental diagram of road networks[J]. Control Theory & Applications, 2016, 33(5): 645-652]
[5] 张逊逊, 许宏科, 闫茂德. 基于MFD的城市区域路网多子区协调控制策略[J]. 交通运输系统工程与信息, 2017, 17(1): 98-105. [ZHANG X X, XUN H K, YAN M D. Coordinated control strategy for multi-subarea based on MFD in urban zonal road networks[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1): 98-105.]
[6] GEROLIMINIS N, DAGANZO C F. Existence of urbanscale macroscopic fundamental diagrams: Some experimental findings[J]. Transportation Research Part B: Methodological, 2008, 42(9): 759-770.
[7] CASSIDY M J, JANG K F, DAGANZO C. Macroscopic fundamental diagrams for freeway networks: theory and observation[J]. Journal of the Transportation Research Board, 2011, 2260(2): 8-15.
[8] 杜廷伟. 基于高斯混合模型聚类的Kinect深度数据分割[D]. 北京: 北京工业大学, 2013. [DU T W. Kinect depth data segmentation based on Gaussian mixture model clustering[D]. Beijing: Beijing University of Technology, 2013.] |