[1] 张新钰, 高洪波, 赵建辉, 等. 基于深度学习的自动驾驶技术综述[J]. 清华大学学报(自然科学版), 2018, 58 (4): 438-444. [ZHANG X Y, GAO H B, ZHAO J H, et al. Overview of deep learning intelligent driving methods[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(4): 438-444.]
[2] 刘华平, 李建民, 胡晓林, 等. 动态场景下的交通标识检测与识别研究进展[J]. 中国图像图形学报, 2013, 18 (5): 493-503. [LIU H P, LI J M, HU X L, et al. Recent progress in detection and recognition of the traffic signs in dynamic scenes[J]. Journal of Image and Graphics, 2013, 18(5): 493-503.]
[3] 张秀玲, 张逞逞, 周凯旋. 基于感兴趣区域的CNNSqueeze 交通标志图像识别[J]. 交通运输系统工程与信息, 2019, 19(3): 48-53. [ZHANG X L, ZHANG C C, ZHOU K X. Traffic sign image recognition via CNNSqueeze based on region of interest[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(3): 48-53.]
[4] 黄继鹏, 史颖欢, 高阳. 面向小目标的多尺度Faster- RCNN 检测算法[J]. 计算机研究与发展, 2019, 56(2): 319-327. [HAUNG J P, SHI Y H, GAO Y. Multi-scale Faster-RCNN algorithm for object detection[J]. Journal of Computer Research and Development, 2019, 56(2): 319-327.]
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region- based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 38 (1): 142-158.
[6] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 6517-6525.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. European Conference on Computer Vision. Springer, Cham, 2016: 21-37.
[8] 薛玉利. 雾霾天气情况下的交通标志检测[J]. 交通运输系统工程与信息, 2016, 16(4): 88-94. [XUE Y L. Traffic sign detection under fog and haze weather[J], Journal of Transportation Systems Engineering and Information Technology, 2016, 16(4): 88-94.]
[9] MOGELMOSE A, TRIVEDI M M, MOESLUND T B. Vision-based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1484-1497.
[10] HUANG G, LIU Z, WEINBERGER K Q, et al. Densely connected convolutional networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4700-4708.
[11] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[OL]. [2019-09-03]. http://arxiv.orb/abs/ 1704.04861.
[12] 李珣, 刘瑶, 李鹏飞, 等. 基于Darknet框架下YOLO v2 算法的车辆多目标检测方法[J].交通运输工程学报, 2018, 18(6): 142- 158. [LI X, LIU Y, LI P F, et al. Vehicle multi-target detection method based on YOLO v2 algorithm under darknet framework[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 142-158.]
[13] WOO S , PARK J , LEE J Y , et al. CBAM: convolutional block attention module[C]. European Conference on Computer Vision. Springer, 2018.
[14] HOUBEN S, STALLKAMP J, SALMEN J, et al. Detection of traffic signs in real-world images: The german traffic sign detection benchmark[C]. IEEE International Joint Conference on Neural Networks, 2013: 1-8.
[15] LOKANATH M, KUMAR K S, KEERTHI E S. Accurate object classification and detection by faster- RCNN[J]. IOP Conference Series: Materials Science and Engineering, 2017, 263: 052028.
[16] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2001: 511-518.
[17] ZHANG X Y, ZHOU X Y, LIU M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[OL]. [2019-09-03]. http://arxiv.orb/abs/ 1707.01083.
[18] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. Squeeze Net: Alex Net-level accuracy with 50x fewer parameters and <0.5MB model size[C]. International Conference on Learning Representations, 2016. |