交通运输系统工程与信息 ›› 2020, Vol. 20 ›› Issue (4): 173-177.

• 系统工程理论与方法 • 上一篇    下一篇

基于机器学习模型的建成环境对小汽车拥有行为的影响

王晓全,邵春福* ,管 岭,尹超英   

  1. 北京交通大学 综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044
  • 收稿日期:2020-02-14 修回日期:2020-05-13 出版日期:2020-08-25 发布日期:2020-08-25
  • 作者简介:王晓全(1992-),男,黑龙江宾县人,博士生.
  • 基金资助:

    中央高校基本科研业务经费专项资金/The Fundamental Research Funds for the Central Universities (2019YJS101).

Exploring Influences of Built Environment on Car Ownership Based on a Machine Learning Method

WANG Xiao-quan, SHAO Chun-fu, GUAN Ling, YIN Chao-ying   

  1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China
  • Received:2020-02-14 Revised:2020-05-13 Online:2020-08-25 Published:2020-08-25

摘要:

为分析家庭小汽车拥有行为,同时考虑居住地和工作地建成环境的影响,构建梯度提升迭代决策树(GBDT)模型;分析社会经济属性,居住地、工作地建成环境属性对小汽车拥有行为的影响程度,并基于长春市居民出行调查数据进行实证研究.结果表明:3类影响因素中,社会经济属性对小汽车拥有行为的影响最大(58.95%);职住地建成环境属性均对家庭小汽车拥有行为具有显著影响,且居住地建成环境影响(23.77%)高于工作地建成环境(17.28%);职住地建成环境属性中,除居住地交叉口密度,工作地到中央商务区(CBD)距离及公共交通站点密度外,其他建成环境属性对小汽车拥有行为的影响均大于5%.因此,有必要同时优化职住地的建成环境来抑制小汽车拥有量的增长.

关键词: 交通工程, 职住地建成环境, 小汽车拥有, 影响程度, 梯度提升迭代决策树

Abstract:

To analyze the car ownership behaviors, a gradient boosting decision tree (GBDT) method is employed to explore the effect sizes of residential and workplace built environments on car- ownership decisions. The empirical analysis is conducted based on the Changchun household travel survey data. The results show that the socio-economic factors contribute 58.95% to automobile ownership collectively and rank the first among the three categories of factors. The residential and workplace built environment variables are both associated with car ownership. And the residential built environment is more influential than the workplace built environment. Except for intersection density at residential locations, distance to the central business district(CBD), and bus stop density at workplace locations, all built environment variables have relative importance more than 5%. Therefore, it is of great importance for urban planners and policy makers to optimize the urban built environment to mitigate the increase of car ownership.

Key words: traffic engineering, workplace built environment, car ownership, relative importance, gradient boosting decision tree

中图分类号: