[1] WANG S, MENG Q. Liner ship route schedule design with sea contingency time and port time uncertainty[J]. Transportation Research Part B: Methodological, 2012, 46(5): 615-633.
[2] 乐美龙, 刘秀玲. 基于泊位偏好与岸桥干扰的泊位和岸桥分配[J]. 运筹与管理, 2014, 23(1): 90-100. [LE M L, LIU X L. Berth and quay crane allocation considering berth preference and quay crane interference[J]. Operations Research and Management Science, 2014, 23 (1): 90-100.]
[3] 刘名武, 丰新颖, 王勇. 内河集装箱港锚地—泊位资源配置多目标决策[J]. 交通运输系统工程与信息, 2017, 17(5): 193- 199. [LIU M W, FENG X Y, WANG Y. Multi-objective allocation of anchorage-berth resources at inland river container port[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 193-199.]
[4] DULEBENETS M A. Minimizing the total liner shipping route service costs via application of an efficient collaborative agreement[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(1): 123- 136.
[5] DULEBENETS M A. A comprehensive multi- objective optimization model for the vessel scheduling problem in liner shipping[J]. International Journal of Production Economics, 2018, 196: 293-318.
[6] LI C, QI X, SONG D. Real- time schedule recovery in liner shipping service with regular uncertainties and disruption events[J]. Transportation Research Part B: Methodological, 2015, 93: 762-788.
[7] SONG Y, WANG N. On probability distributions of the operational law of container liner ships[J]. Journal of the Royal Statistical Society: Series A (Statistics in Society), 2019, 182(3): 943-961. |