[1] BROCKMANN D, HUFNAGEL L, GEISEL T. The scaling laws of human travel[J]. Nature, 2006, 439: 462- 65.
[2] GONZALEZ M C, HIDALGO C A, BARABASI A L. Understanding individual human mobility patterns[J]. Nature, 2008, 453: 779-82.
[3] 丁亮, 钮心毅, 宋小冬. 利用手机数据识别上海中心城的通勤区[J]. 城市规划, 2015, 39(9): 100-106. [DING Y, NIU X Y, SONG X D. Identifying the commuting area of Shanghai central city using mobile phone data[J]. City Planning Review, 2015, 39(9): 100-106.]
[4] 闫晴, 李诚固, 陈才, 等. 基于手机信令数据的长春市 活 动 空 间 特 征 与 社 区 分 异 研 究 [J]. 人文地理, 2018, 33(6): 35-43. [YAN Q, LI C G, CHEN C, et al. Characteristics of activity space and community differentiation in Changchun: A study using mobile phone signaling data[J]. Human Geography, 2018, 33 (6): 35-43.]
[5] 程静, 刘家骏, 高勇. 基于时间序列聚类方法分析北京出租车出行量的时空特征[J]. 地球信息科学学报, 2016, 18(9): 1227-1239. [CHENG J, LIU J J, GAO Y. Analyzing the spatio- temporal characteristics of Beijing's OD trip volume based on time series clustering method[J]. Journal of Geo-Information Science, 2016, 18 (9): 1227-1239.]
[6] 邬群勇, 张良盼, 吴祖飞. 利用出租车轨迹数据识别城市功能区[J]. 测绘科学技术学报, 2018, 35(4): 413- 417, 424. [WU Q Y, ZHANG L P, WU X F. Identifying city functional areas using taxi trajectory data[J]. Journal of Geomatics Science and Technology, 2018, 35(4): 413- 417, 424.]
[7] IQBALM S, CHOUDHURY C F, WANG P, et al. Development of origin-destination matrices using mobile phone call data[J]. Transportation Research Part C: Energing Technologies, 2014, 40(1): 63-74.
[8] 高悦, 王文贤, 杨淑贤. 一种基于狄利克雷过程混合模型的文本聚类算法[J]. 信息网络安全, 2015(11): 60- 65. [GAO Y, WANG W X, YANG S X. A document clustering algorithm based on dirichlet process mixture model[J]. Netinfo Security, 2015(11): 60-65.] |