[1] MA H G, LI X, YU H T. Single bus line timetable optimization with big data: A case study in Beijing[J]. Information Sciences, 2020, 536: 53-66.
[2] CHEN F, ZHANG J L, WANG Z J, et al. Passenger travel characteristics and bus operational states: A study based on IC card and GPS data in Yinchuan, China[J]. Transportation Planning and Technology, 2019, 42: 825- 847.
[3] 张晓春, 高永, 于壮, 等. 基于公交GPS和IC卡数据的乘客人均候车时间估算方法研究[J].交通运输系统工程与信息, 2019, 19(5): 236-241. [ZHANG X C, GAO Y, YU Z, et al. Passenger average waiting time estimation based on bus GPS and IC card data[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(5): 236-241.]
[4] SONG X, OUYANG Y X, DU B W, et al. Recovering individual's commute routes based on mobile phone data [J]. Mobile Information Systems, 2017, 2017: 1-11.
[5] BACHIR D, KHODABANDELOU G, GAUTHIER V, et al. Inferring dynamic origin-destination flows by transport mode using mobile phone data[J]. Transportation Research Part C, 2019, 101: 254-275.
[6] LIN F, LV M Q, WANG T, et al. Map matching based on Cell-ID localization for mobile phone users[J]. Cluster Computing, 2019, 22: S6231-S6239.
[7] DABIRI S, HEASLIP K. Inferring transportation modes from GPS trajectories using a convolutional neural network[J]. Transportation Research Part C, 2018, 86: 360-371.
[8] CHIN K, HUANG H S, HORN C, et al. Inferring finegrained transport modes from mobile phone cellular signaling data[J]. Computers, Environment and Urban Systems, 2019, 77: 101348.
[9] XIA Y, TANG J, ZHANG X, et al. Travel modes recognition method based on mobile phone signaling data [C]//ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 2019: 677-688.
[10] 丛雅蓉, 王永岗, 余丽洁, 等. 土地利用因素对城市轨道交通车站客流的时空影响因素[J].城市轨道交通研究, 2021, 24(1): 116-121. [CONG Y R, WANG Y G, YU L J, et al. Spatial-temporal effects of land use factors on metro station passenger flow[J]. Urban Mass Transit, 2021, 24(1): 116-121.] |