交通运输系统工程与信息 ›› 2021, Vol. 21 ›› Issue (2): 158-165.

• 系统工程理论与方法 • 上一篇    下一篇

城市公共交通常乘客通勤出行提取方法

彭飞1,宋国华*1,朱珊2   

  1. 1. 北京交通大学,综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044; 2. 北京交通发展研究院,北京 100073
  • 收稿日期:2020-11-28 修回日期:2021-01-24 出版日期:2021-04-25 发布日期:2021-04-25
  • 作者简介:彭飞(1994- ),男,河南许昌人,博士生。
  • 基金资助:

    国家自然科学基金/National Natural Science Foundation of China(71871015);北京市科技计划项目/Beijing Municipal Science and Technology Project(Z191100002519006)。

A Method for Extracting Commuting Trips of Frequent Passengers in Urban Public Transportation

PENG Fei1 , SONG Guo-hua*1 , ZHU Shan2   

  1. 1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China; 2. Beijing Transport Institute, Beijing 100073, China
  • Received:2020-11-28 Revised:2021-01-24 Online:2021-04-25 Published:2021-04-25

摘要:

为挖掘公共交通通勤出行精准化特征,从追踪出行链的角度出发,利用公交与轨道多源数据研究常乘客通勤出行提取方法。通过选取潜在职住地设置高频职住地集合,提出公共交通常乘客职住地识别算法,结合出行链起讫站点与职住地空间信息匹配提取通勤出行链,并将常乘客出行分为home-work通勤、work-home通勤和非通勤出行。以北京市“回天地区”公交与轨道出行链数据为例,提取常乘客通勤出行。结果表明:常乘客职住地识别率达到85.9%,常乘客通勤出行和非通勤出行在出行时空分布和出行方式上存在明显差异,通勤出行提取可为北京市面向常乘客开展“预约出行”并分析其出行需求动态特征变化提供依据。

关键词: 城市交通, 公共交通, 职住地识别, 常乘客, 通勤出行

Abstract:

In order to explore the precise characteristics of commuting trips in public transportation, this paper investigates an extraction method for commuting trips of frequent passengers using multi- source data of bus and rail transit from the perspective of tracking trip chains. The proposed algorithm is based on the selection of potential homework locations and the setting of a high-frequency home-work locations set. The extraction algorithm combines the spatial matching of the origin and destination of the trip chain with the home and work locations. And the commuters' trips are divided into home- work commuting trips, work- home commuting trips, and noncommuting trips. The results show that the home-work locations identification rate of frequent passengers reaches 85.9% , and there are significant differences in the spatial and temporal distribution of trip and trip mode between commuting and non- commuting trips, which can be used as a basis for Beijing's development for frequent passengers. It provides a basis for "reserved trips" and analyzing changes in the dynamic characteristics of their trip demand.

Key words: urban traffic, public transportation, home-work locations identification, frequent passengers, commuting trip

中图分类号: