交通运输系统工程与信息 ›› 2021, Vol. 21 ›› Issue (5): 102-113.

• • 上一篇    下一篇

数据驱动跟驰模型综述

贺正冰*1,徐瑞康1,谢东繁2,宗芳3,钟任新4   

  1. 1. 北京工业大学,交通工程北京重点实验室,北京 100124;2. 北京交通大学,交通系统科学与工程研究院,北京 100044; 3. 吉林大学,交通学院,长春130022;4. 中山大学,智能工程学院,广州 510006
  • 收稿日期:2021-04-08 修回日期:2021-04-16 接受日期:2021-04-22 出版日期:2021-10-25 发布日期:2021-10-21
  • 作者简介:贺正冰(1982- ),男,辽宁锦州人,教授,博士。
  • 基金资助:
    国家重点研发计划

A Review of Data-driven Car-following Models

HE Zheng-bing* 1 , XU Rui-kang1 , XIE Dong-fan2 , ZONG Fang3 , ZHONG Ren-xin4   

  1. 1. Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China; 2. Institute of Transportation System Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; 3. Transportation College, Jilin University, Changchun 130022, China; 4. School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou 510006, China
  • Received:2021-04-08 Revised:2021-04-16 Accepted:2021-04-22 Online:2021-10-25 Published:2021-10-21
  • Supported by:
    National Key Research and Development Program of China

摘要: 车辆跟驰模型是被交通科学与交通工程领域广泛认可的微观交通流模型,是交通流理论 的基础。近年来,信息感知与获取、大数据、人工智能等技术快速发展,推动了数据驱动跟驰模型 的快速发展。数据驱动跟驰模型,是以真实的车辆行驶数据为基础,利用数据科学与机器学习等 理论和方法,通过样本数据的训练、学习、迭代、进化,挖掘车辆跟驰行为的内在规律。本文系统 回顾了数据驱动跟驰模型在过去20余年的发展历程以及由神经网络和深度学习带动的两次研究 热潮,归纳了基于传统机器学习理论的跟驰模型、基于深度学习的跟驰模型、模型与数据混合驱 动的跟驰模型3类数据驱动跟驰模型,并分别介绍了其中的典型代表。分析数据源发现,尽管各 种高精度轨迹数据不断涌现,目前研究仍多使用美国于2006年发布的Next Generation Simulation (NGSIM)高精度车辆轨迹数据,模型的可移植性和泛化能力值得思考与研究。提出关于模型输 入、输出的3个问题:如何考虑更多驾驶行为变量,是否有必要考虑更多行为变量,现有输入、输出 是否可替换。在模型测试与验证方面,发现并讨论了目前测试不充分、对比不完整、缺少统一测 试集与测试标准等问题。最后,探讨了数据驱动跟驰模型原创性与成功的关键因素等问题。期 望通过本文的梳理,帮助研究者更好地了解数据驱动跟驰模型的过去与现状,促进相关研究的快 速发展。

关键词: 交通工程, 交通流理论, 深度学习, 机器学习, 大数据, 跟驰模型

Abstract: A car- following model is one of the microscopic traffic flow models that are widely focused on by transportation research and engineering. In recent years, the rapid technological advancement in information perception and acquisition, big data, and artificial intelligence, etc., has promoted the great development of data- driven carfollowing models. Based on data science and machine learning theory, data-driven car- following models obtain the inherent law of car- following behaviors through the training, learning, iteration and evolution of real-world vehicle motion data. This paper reviews the evolution of data-driven car-following models over the past 20 years and analyzes its two research waves driven by neural network and deep learning, respectively. Three typical types of data-driven carfollowing models and their representatives are reviewed, including traditional machine learning- based car- following models, deep learning-based car- following models, and model-data hybrid driven car- following models. Data source analysis indicates that, although a variety of high-fidelity trajectory datasets are constantly emerging, the Next Generation Simulation (NGSIM) datasets released by the United States in 2006 are still the most widely used, inparticular in recent years. Therefore, the transferability and generalization of the models are worth investigating. We also discuss from the following aspects: model input and output including how to involve more driving behavior variables, whether it is necessary to consider more behavioral variables, and whether the existing input and output can be replaced; Model testing and verification including insufficient testing, incomplete comparison, lack of unified test dataset and test standard. At last, the key factors regarding the originality and success of data- driven car- following models are discussed. It is expected that this review can help researchers better understand the past and present situations of data-driven car-following models and promote the progress of related research.

Key words: traffic engineering, traffic flow theory, deep learning, machine learning, big data, car-following model

中图分类号: